

1

A Tutorial on Writing the Shape of Molecules

Dr. Fred O mega G arces
Chemistry 100
M iramar College

M ain premise of model-
Valence electron pair repel each other in molecule with shapes the molecule
M olecule assumes G eometry that minimizes electrostatic repulsion:

Driving force is the Pauli exclusion principle :
2 electrons with same spin can't occupy the same space.
Electronic Geometry is the geometry around the central atom in which electron-electron repulsion is minimize. AE_{n} (system)
M olecular Geometry is geometry around central atom when electron pairs are replace by bonding atoms and the nonbonding electrons are ignored.
$\mathrm{AB}_{\mathrm{m}} \mathrm{E}_{\mathrm{n}}$ (system)

V SEPR - Procedural Steps

1) Determine the Lewis Structure.

a) Valence electrons for each atom in the structure.
b) Determine the atomic sequence, the number of bonds, remaining electrons
c) Write Lewis structure with each atom obeying the octet rule

Example: HNO_{3} (SeeLewis StructureTutorial)

V SEPR - Procedural Steps

2) Determine electronic geometry ($\mathbf{A E}_{\mathrm{n}}$ system) from Lewis structure.

a) Count the electron domain (region) around the central atom.
b) Arrange electron domain to minimize electron-electron repulsion. 0 ccurs when electron pair are far apart as possible.
c) 2-domain \rightarrow linear, 3-domain \rightarrow trigonal, 4-domain \rightarrow tetrahedral

Example: HNO_{3}

Central Atoms, N and O
N : Three electron domain

then abletin

 "hee abmbrime
$\mathrm{AE}_{3} \rightarrow$ Trigonal
0: Four electron domain
$\mathrm{AE}_{4} \rightarrow$ Tetrahedral

3) Determine molecule geometry $\left(\mathbf{A B}_{m} \mathbf{E}_{\mathrm{n}}\right)$ from electronic geometry.
a) The geometry is based on the position of the atoms.
b) The lone pair electrons are ignored for the molecular geometry.
i) Elec Geometry -Linear $A E_{2}$. Mols Geometry-Linear $A B_{2}$
ii) Elec Geometry - Trigonal AE_{3}. MolcGeo- Trig AB_{3} or Bent $\mathrm{AB}_{2} E$
ii) Elec Geometry -Tetrahedral AE_{4}. Mols Geo -terr AB_{4}, pyramid $A B_{3} E$ or Bent $A B_{2} E_{2}$

Example: HNO_{3}
Central atom: Nitrogen
Alec Geometry - AE_{3} Trigonal. Mols Geometry - AB_{3} Trigonal.
Gown

Central atom: Oxygen
Elec Geometry - AE_{4} Tetrahedral Mold Geometry - $\mathrm{AE}_{2} \mathrm{~B}_{2}$ Bent ("V")

Space Filling Model (A) and Ball and Stick Model (B). The shape around the Nitrogen has a trigonal geometry and the shape around the oxygen is a bent (or "V") shape.

HNO_{3} Quick Time Movie

Click on the movieto start the QuickTime Movie on the
 perspective of the Nitric acid $\left(\mathrm{HNO}_{3}\right)$ molecule.

\bigcirc

Determining Molecular Shape
10.7.00 10:09 PM

Summary

Key to determine molecular G eometry

- Lewis Structure

D etermine electron domain in structure.

- Electronic G eometry

Establish the AE_{n} system.

- M olecular Geometry

Establish the $A B_{m} E_{n}$ system.
D on't count lone pairs in the molecular.

