Atomic Absorption Spectrometry (Chapter 9)

- AAS intrinsically more sensitive than AES
- similar atomization techniques to AES
- addition of radiation source
- high temperature for atomization necessary flame and electrothermal atomization
- very high temperature for excitation not necessary generally no plasma/arc/spark AAS

Flame AAS:

- simplest atomization of gas/solution/solid
- laminar flow burner stable "sheet" of flame
- flame atomization best for reproducibility (precision) $($ < $1\%)$
- relatively insensitive incomplete volatilization, short time in beam

Primary combustion zone - initial decomposition, molecular fragments, cool

Interzonal region - hottest, most atomic fragments, used for emission/fluorescence

Secondary combustion zone - cooler, conversion of atoms to stable molecules, oxides

- element rapidly oxidizes largest [atom] near burner
- element poorly oxidizes largest [atom] away from burner

most sensitive part of flame for AAS varies with analyte

Consequences?

sensitivity varies with element must maximize burner position makes multielement detection difficult

Electrothermal Atomizers:

- entire sample atomized short time (2000-3000 °C)
- sample spends up to 1 s in analysis volume
- superior sensitivity (10-10-10-13 g analyte)
- less reproducible $(5-10\%)$

Graphite furnace ETA (Fig 9-6)

 (b)

- external Ar gas prevents tube destruction
- internal Ar gas circulates gaseous analyte

Three step sample preparation for graphite furnace:

- (1) Dry evaporation of solvents $(10 \rightarrow 100 \text{ s})$
- (2) Ash removal of volatile hydroxides, sulfates, carbonates (10-100 s)
- (3) Fire/Atomize atomization of remaining analyte (1 s)

Atomic Absorption Instrumentation:

- AAS should be very selective each element has different set of energy levels and lines very narrow
- BUT for linear calibration curve (Beers' Law) need bandwidth of absorbing species to be broader than that of light source

difficult with ordinary monochromator

Solved by using very narrow line radiation sources

- minimize Doppler broadening
- pressure broadening
- lower P and T than atomizer

and using resonant absorption

• Na emission 3p 2s at 589.6 nm used to probe Na in analyte

Hollow Cathode Lamp: (Fig 9-11)

- 300 V applied between anode (+) and metal cathode (-)
- Ar ions bombard cathode and sputter cathode atoms
- Fraction of sputtered atoms excited, then fluoresce
- Cathode made of metal of interest (Na, Ca, K, Fe...) different lamp for each element restricts multielement detection
- Hollow cathode to

maximize probability of redeposition on cathode restricts light direction

Electrodeless Discharge Lamp: (Fig 9-12)

AAS Spectrophotometers:

Signal at one wavelength often contains luminescence from interferents in flame

Chemical interference:

- (i) reverses atomization equilibria
- (ii) reacts with analyte to form low volatility compound

releasing agent - cations that react preferentially with interferent - Sr acts as releasing agent for Ca with phosphate

protecting agent - form stable but volatile compounds with analyte (metal-EDTA formation constants)

(iii) ionization

M
$$
M^+ + e^ E = IP_M
$$

\nN_{M⁺} = N_M exp $\frac{-IP_M}{kT}$

*Data from B. L. Vallee and R. E. Thiers, in Treatise on Analytical Chemistry, I. M. Kolthoff and P. J. Elving, Eds., Part I, Vol. 6, p. 3500. New York: Interscience, 1965. Reprinted with permission of John Wiley & Sons, Inc.

hotter atomization means:

more ionization

emission from interferents

Spectral interference - emission or absorption from interferent overlaps analyte

Fig 9-13(b)

Beam usually *chopped* or *modulated* at known frequency

Signal then contains constant (background) and dynamic (timevarying) signals

Detection limits for AAS/AES?

- AA/AE comparable (ppb in flame)
- AAS less suitable for

weak absorbers (forbidden transitions) metalloids and non-metals (absorb in UV) metals with low IP (alkali metals)

