Using the Varian AA240 Atomic Absorption Spectrometer

Varian AA240 Operations

Varian AA240 at Miramar College

Located in S5-209, Science Building, Miramar College

Preparing instrument for operation

Flip the switch to turn on the fume hood above the spectrometer Turn on the oxygen and acetylene gas cylinder

Check to make sure that the acetylene tank does not go below 400 psi Acetylene pressure 2nd stage set for 75 psi Oxygen pressure 2nd stage set for 40 psi

Turn on the AAS spectrometer by switching the power button, (bottom left corner of spectrometer) When you turn on the spectrometer, wait a few seconds and listen for the "burp" The burp from the instrument is an indicator that the instrument is positioning all setting to the zero point

Turn on the computer by pressing the power button of the CPU.

Opening screen using Windows XP

Click on worksheet

Click on worksheet (create new worksheet)

Click on New

Type in file name

Opening menu after new worksheet is open Note the menu - Filing - Develop - Labels - Analysis

🔶 🗛 240 - Cł	1em251		- 6 🛛
File Edit View	Instrument Options	Window Help	
🎽 🖬 🖉	🔍 🛛 🖻 🖪 🗙	33	
Filing	Develop	Labels Analysis	
-	Load Worksheet (Ctrl+L)		
- Current Work	sheet		
JAA	Save (Ctrl+S)	Name: Chem251	
Fel		Created: 3:40 PM 5/11/2007	
	Close (Ctrl+F4)	Analyst:	
		Comment:	
	<u>R</u> ename	Filename: Chem251	
	Approve		
Help			
Chem25	1/		
🐉 start	🔶 Spectraa	🛃 Document - WordPad	🔇 🦁 4:05 PM

Click on the Develop tab and choose add methods

Select Method Type -- Flame Choose the Element - Sodium, copper, calcium

A A 240 - Cu Test1 File Edit View Instrument Options Window He File I I I I I I I I I I I I I I I I I I I	lo 「「「「」」「「「」」「「」」「「」」「「」」「「」」「「」」「「」」」「「」」」「」」」「」」「」」「」」「」」「」」「」」「」」「」」」」	
Worksheet Methods Ejement Methods Add Add Add Fast Sequencial Vizerd SRM Wizerd Edit Methods Edit Sequence Paumeters Edit Help Low Text1	Natix Perview Perview Perview Perview Perview Pervie	
🛃 start 🔷 Spectraa	🛛 Document - WordPad) 4:08 PM

Click on the element (i.e., Na) to get Method menu for the element to be analyze

Double check that the element selected is under the Flame.

Choose under Sampling Mode: Manual

Choose Flame type: Acetylene with Air flow = 3.50 and Acetylene Flow = 1.50

🔶 AA 240 - Ch	em251a	· · · · · · · · · · · · · · · · · · ·			
	Ca Da m		- 344		
	Develop				
Filing	Develop	Labels Analysis			
- Worksheet Me	ethods	Methods - Method 1 of 1			
	Add Methods	Type/Mode Measurement Optical SIPS	Standards Calibration QC Test	s Sampler Notes Coc <>	
iA	East Sequential	Method Type: Flame	Select a page tab (Top) to disp method tab (Bottom) to review e	lay method parameters, or a sach method. Note: Once a	
A		Element Na Select	certain fields will become disable	ed. When QC=On (Sequence	
A	SRM Wizard	Matrig	weating, de notes des destactes.		
	Edit	 Sampling Mode 	Flame type & Gas flows (L/min		
<u></u>	Methods	Manual	Flame Type	Air/Acetylene	
		Autonormal Misso Samples	Aig Flow	3.50 😂	
	EdR Sequence	C micro surpary	Agetylene Flow	1.50 😂	
uur I	Parameters	Instrument Mode	Online Diluter Type		
		Emission	Sampler Dilutor		
Help					
		C Park Nexts			
	L		Ok	Cancel Help	
Chem251	a				
🛃 start 🔰	🔽 Tutorial.rft -	WordPad 🔶 Spectraa			9 🛼 9, 🖲 🗞 2:54 PM

Click the measure tab

Select Measure mode: integration Select Calculation mode: Concentration

AA 240 - Chem251a	s Window Help		
Filing Develop	Labels Analysis		
Worksheet Methods	Methods - Method 1 of 1	×	
Add Methods	Type/Mode Measurement Optical SIPS Standards	Calibration QC Tests Sampler Notes Coc	
East Sequential Wizard SRM Wizard	Measurement Mode FROM FROM Integration Preak Height Peak Area	xde añon O Scale Expansion Additions ng Standards	
Edit Methods	Integrate Repeat Minimum Reaging 0.0000 Standard Condo		
Edit Sequence Parameters	Smoothing 7 point Pigcision (%) Line (s) Messurement 10.0 Read Delay 10 Sample	10 *	
Неф	(Back Next)		
	↓ Na ∫	Ok Cancel Help	
Chem251a			
🛃 start 🛛 🗒 Tutorial.rft -	VordPad 🔷 Spectraa		🔋 😹 🧐 😵 💩 2:55 PM

Select Optical tab

The lamp position is set for the element selected The wavelength is set for the line max of the element source Click on optics, this will allow the selection of lamp and metal to be analyze Select the wavelength that will be used from the lamp

AA 240 - Chem251a	
Filing Develop Labels Analysis	
Worksheet Methods - Methods - Method of 1	
East Sequential Ward	
SRM W/zard	
Edit Monochromator Wavelength (rm) 593.0 v Sili Woth (rm) 0.5 v	
Edit Sequence Parameters	
Heb Rade Marta	
Ohm251a/	
🚼 start 🛛 🗊 Tulonial int - WondPad 🔶 Spectraa 🔍 🕏 😓), 🧐 🚷 3:00 PM

Skip the sips tab, the instrument does not have sips accessories.

Select the standard tab

These are the standards that will be analyze in a Beer-Lambert analysis Concentrations are entered and the units are assigned. (mg/L = ppm)

iing Develop	Labels Analysis
ksheet Methods	Aethods - Method 1 of 1
Add	Type/Mode Measurement Optical SIPS Standards Calibration QC Tests Sampler Notes Coc
Methods	Standards Conc. Bef.åbs
East Sequential	STANDARD 1 0.1000
wizard	STANDARD 2 0.2000 Lower Valid Concentration 0.0000
. SBM Wizard	STANDARD 3 0.4000 Upper Valid Concentration 0.4000
A	STANDARD 4
	© Conc Decimal Places 4
Edit	STANDARD 7 O Significant Figures
Methods	STANDARD 8
	STANDARD 9
Edd	STANDARD 10 Std.Units Std.Units mg/L
Sequence	_ SIDS
Parameters	Bull Old Case
	Bigk Sta Conc
Help	Standard Lount
	< Back Next>
	Ok Cancel Help
L	

Click on the Calibration tab

Select the Linear (Beer-Lambert) Calibration algorith	algorithm	Calibration	_ambert)	(Beer-	Linear	lect the	Se
---	-----------	-------------	----------	--------	--------	----------	----

◆ AA 240 - Chem251a File Edit View Instrument Optio	ns Window Help	
Filing Develop	Labels Analysis Methods - Method 1 of 1	
Add Methods	Type/Mode Measurement Optical SIPS Standards Calibration QC Tests Sampler Notes Coc	
East Sequential Wizard	Calib. Algorithm Linear 🖌 Recalibration Rate 100 🗢	
SRM Wizard	CalZero Rate 0 8td No. 2	
Edit Methods	Expansion Factor 1.0	
Edit Sequence Parameters	Reslope 75.0 % 125.0 % Internal Standard 0.5 % 0.5 %	
Help	Read Reagent Blank with Calibration / Reslope	
	< Back Next>	
	Ok Cancel Help	
Chem251a		
🛃 start 🛛 🔄 Tutorial.rft -	WordPad 🔷 Spectraa	🔰 去 🧐 😵 🚷 3:02 PM

Skip the: QC Tests Sampler Notes Cookbook tab

Click OK

Click on labels tab

Label the sample to be analyze. i.e., Na in snack #1, Na in snack #2 ...

				🖬 🖨 ラ			
Filing Develop		Labels	Analysis	- 22			
	Labels a	nd Sample <u>P</u> rep.					
		Sample	Sample	Sample	S. 🔨		
Import Labels	Rows	Labels	Weiahts	Volumes	1 0000	Ins/Del Rows	
		Sample UUI	1.0000	1.0000	1.0000	Auto Copy	
Export	2	Sample 002	1.0000	1.0000	1.0000	Colution Turce	
Labels	4	Sample 003	1.0000	1.0000	1.0000	Solution Type	
	5	Sample 005	1 0000	1 0000	1.0000		
Calum Camelar	6	Sample 006	1.0000	1.0000	1.0000	Nominal Weight 1,0000	
Racks	7	Sample 007	1.0000	1.0000	1.0000	Nominal Volume 1 0000	
	8	Sample 008	1.0000	1.0000	1.0000	1.000	
	9	Sample 009	1.0000	1.0000	1.0000	Edit Nominals	
Setup PSD	10	Sample 010	1.0000	1.0000	1.0000		
Carousels	11	Sample 011	1.0000	1.0000	1.0000		
	12	Sample 012	1.0000	1.0000	1.0000	Total Bows 50	
	13	Sample 013	1.0000	1.0000	1.0000		
Loading Guide	14	Sample 014	1.0000	1.0000	1.0000	Result Rows: 0	
	15	Sample 015	1.0000	1.0000	1.0000		
	16	Sample 016	1.0000	1.0000	1.0000		
Help	17	Sample 017	1.0000	1.0000	1.0000		
	18	Sample 018	1.0000	1.0000	1.0000		
	19	Sample 019	1.0000	1.0000	1.0000		
	20	Sample 020	1.0000	1.0000	1.0000		
	21	Sample 021	1.0000	1.0000	1.0000		
	22	Sample 022	1.0000	1.0000	1.0000		
	23	Sample 023	1.0000	1.0000	1.0000		
	24	Sample 024	1.0000	1.0000	1.0000		
	25	Sample 025	1.0000	1.0000	1.0000		
	26 <	Sample 026	1 0000	1 0000	1 0000 🞽		
Chem251a/							

Select the Analysis Tab to begin optimizing the flame and signal.

At this point the instrument should have already been turned on, if not, turn on the spectrometer (listen for the burp) and wait 1-2 min for instrument to warm up.

Click on Optimize (under the Select button) from the menu on the left.

Click on Optimize Lamp, and adjust the lamp (i.e, screws at the bottom of Na lamp) to maximize the signal (green bar). If the signal max out, then click on rescale to lower the gain (S/N)

When the lamp signal is optimized, click on OK.

. 🗗 🗙 8 **(** 🐚 💼 🗙 🤢 🔲 🛄 🗹 🔛 🖉 📲 💥 🚽 🖓 🖨 🚍 **1** Develop Labels Analysis Filing - Select Fo 2m Legend Flame Optimization Sampler Offline Optimization: Lamp Gas Flow (L/min) HC Lamp 1.30 Oxidant Acetylen Goto Tube 10.00 10.00 Back 1 😂 1.00 8.00 8.00 Ą 1 😂 Tybe \$ 6.00 6.00 0.50 4.00 4.00 Down height 0 😂 (mm) Key to tube colors Sample Calibration 2.00 2.00 0.00 0.00 0.00 0.940 Calibration/QC Sample/QC 3.50 😂 1.50 😂 Optimize Lamps Dilution Optimize Signal Burner Height 13.5 📚 mm Not Assigned Rescale SIPS Inst Zero Gain 35 % 1.5 mg/L gives about 0.2 Abs at 324.8 nm, A/A burner Ok Cancel Help Method 1 of 1 Absorbance Integrate 5.0 s Lamp 1 Manual BC Off Concentration Air/Acetylene Cu Row 4 of 50 Result rows: 0 Cu Test1 / Chem251 🔷 Spectraa < 😢 4:14 F 🛃 start

It is time to optimize the signal from the sample

Optimize the signal.

Remove the capillary from the water sample and place into one of your standards.

Click on the Optimize signal button under the Optimize Lamp button.

A turquoise bar should display. Optimize this signal to about 0.6. You may have to adjust the flow rate (brown knob beneath the capillary inlet to instrument) As well as adjust the flame and angle of nebulizer

When the signal is optimize, click on OK

ile Edit View Instrument Options image: state	Legend				X
	Down heid Comment C	st ample alibration (mm) alibration (ACC) ample/QC lution of Assigned	Ampler Offline Goto Tube Back 1 Goto Tube Goto Tube Goto Tube Align Probe Rinse Stop rinse Park Prime Diluter	FG Signal 1.30 1.00 0.50 0.00 0.645 Optimize Lamps Optimize Signal Rescale Inst Zero Gain 35 %	Ogeneration Accelulate 0xidant Accelulate 10.00 10.00 8.00 8.00 6.00 6.00 4.00 4.00 2.00 2.00 0.00 1.50 Burner Height 13.5 Start Pump Stop Pump
Sensitivity <u>C</u> h	eck 1.5 mg/L gives about 0.2 Ab	s at 324.8 nm, A/A burner		Ok C	ancel Help 🚽
Cu Method 1 of 1 Absorbance Integrate 5.0 s Chem251 Cu Test1	Lar Concentration Ma Air/Acetylene BC	np 1 nual Row 4 of 50 Off Result rows:	0		

The menu will return to the element , click on cancel. This will take you out of optimize mode.

Under Analyze

Click on select

Select the standards and samples to be analyze, with the marker pointer. Be sure that all others are not highlighted in marcon.

You are now ready to run the standards and then the samples.

Click on start

The instrument will run a zero and then prompt for the standards.

Wait for the instrument instructions before you place then next sample under the capillary that feeds to the nebulizer

AA 240 -					ےات
File Edit Vie	w Instrument Options Window I	Help			
🏽 😂 🛛 🖬 🧯	/ 🔍 🖻 🗈 🗙 💷 🗄	▋▙▐▞▐▋▏▎▟▖▟▖▓▖	🗹 📲 🖨 ラ		
Filing	Develop Lab	els Analysis			
Concentratio	n	%RSD	Mean Abs		
	1 000	0.0	0	0806	
	1.000	0.9	0	0.0800	
V	_) Sample 🛄	324.8		Abs STANDARD 1	51
Salact	Tube Labels	ppm		2.00	
Jelect	2 Sample 002			1.00	
	3 Sample 003			0.00	
Optimize	4 Sample 004				7
8	5 Sample 005			Zoom Overlav Time Autoscale	Š.
Pause	6 Sample 006			Abs Linear - Cal. Set 1	
	7 Sample UU7			0.08	
SIUP	9 Sample 009				
Stop	10 Sample 010			0.06	
H M	11 Sample 011				
Random	12 Commin 012			0.04	
Help	Burner Height: 0.0 mm				
	Instrument Zero [Postrea	d=-0.0003Abs, Gain=34%]		0.02	
	Tube Sample ID		Conc ppm		
	CAL: CAL ZERO		0.000	X 0.000 2.000 4.000 6.000 8.000 10.00 Zoom Overlav Cu ppm	
				Standard Abs Conc %RSD	
	CAL: STANDARD 1		1.000	STANDARD 1 0.0806 1.000 0.9	
				STANDARD 2 3.000 STANDARD 3 5.000	
				STANDARD 4 10.000	
^	Method 1 of 1 🛛 👄	Lamp 1	Autorun in progress.		
Cu	Absorbance Concentra Integrate 5.0 s Air/Acetyl	ation Manual lene BC Off	STANDARD 1, Replicate 3/3	Collecting Cu replicate 3	
Chem	251) 😛 Cu Test1 /				_
				Collecting Cu replicate 3	
🛃 start	🔷 Spectraa	Document - WordPad		 (2) (3) 4:18 	РМ

Instrument will ask for standards and samples and do a Beer's Lambert Calculation

When experiment is complete, the flame will be extinguish by the instrument

AA 240 · C	u Test1 Instrument Options	Window Help			1			. 8 X
Filing	Develop	Labels	Analysis					
Concentration		%RSD		Mea	in Abs			
	0.966		1.4		0.0	764		
Select Optimize Peuse Rendom Help	V Sample Oli 1 Sample Oli 2 Sample Oli 3 Sample Oli 4 Sample Oli 5 Sample Oli 6 Sample Oli 6 Sample Oli 7 Sample Oli 9 Sample Oli 9 Sample Oli 10 Sample Oli 11 Sample Oli 12 Sample Oli 13 Sample Oli	Cu 224.8 ppm 3.102 5.075 9.879 0.9666 0.9666 0.966 0.966 0.966	Information	un completed (Spectri	A 240 Series - Instrum (pID = 30001) Help	Abs Sample 004 2.00 1.50 1.00 0.	50 10 50 Time (0 150 Autocole
	4: Sample O	14			0.966	0.00 0.000 2.000 Zoom Overlav Standard	4.000 6.000 J Cuppm Abs Conc	8.000 10.000 %RSD
	Cu (Flane) - and Worksheet Saved Analysis complete	alysis time to d	late: 4minutes 11/2007 - analy:	sis time to date	: 4minutes 🗸	CAL ZERO STANDARD 1 STANDARD 2 STANDARD 3 STANDARD 4	0.0001 0.000 0.0799 1.000 0.2213 3.000 0.3605 5.000 0.6836 10.000	>100 1.6 2.7 3.9 1.0
Cu	Method 1 of 1 Absorbance Integrate 5.0 s	Concentration Air/Acetylene	Lamp 1 Manual BC Off	Row 4 of 50 Result rows: 4				
Chem2	51) 👙 Cu Test1 /							
4 start		- B pro	mont - Wordford			GCU idi	9	A122 DM
Start	- spectraa	1 000	ament - wortprat					₩ 4:22 Mil

Print results

Allow instrument to cool down for 15 minutes then turn off AA instrument

Turn off AA spectrometer

Turn off gas

Turn off computer.