Waters THE SCIENCE OF WHAT'S POSSIBLE."

Overcoming LC/MS Data Overload in Biotherapeutic Peptide Mapping

Broadcast Date: Wednesday, November 18, 2009 Time: 1:00 pm EDT Sponsored by

Waters

©2009 Waters Corporation | COMPANY CONFIDENTIAL

Scott Berger, Ph.D. Market Development Manager Waters

Adam W. Lucka, Ph.D. Scientist II Alexion Pharmaceuticals

Yan Wang, Ph.D. Scientist 1

Biogen Idec

John Sterling

Editor-in-Chief, Genetic Engineering & Biotechnology News

Embracing the complexity of LC/MS peptide map analysis to drive better informatics.

Scott J. Berger,

Biopharmaceutical Sciences Group, Waters Corporation

Manhattan, NYC

Tryptic Enolase, Yeast

©2009 Waters Corporation | COMPANY CONFIDENTIAL

LC/(MS) Peptide Mapping of Biotherapetics

- Structural Characterization
 - -1° Do peptides conform to the predicted sequence?
 - 3° Are my disulfides in proper arrangement?
- Detecting and Monitoring Modifications
 - Co- and Post-translational modifications
 - Glycosylation, Proteolytic maturation, disulfide bonds
 - Determine product and process related impurities
 - Deamidations, oxidations, pyE, truncations, etc.
 - Host Cell Proteins

Desire for Analytical Completeness

Data analysis, not data acquisition, is the productivity limiting step

LC/ESI-TOF MS Peptide Map

Challenges with Electrospray Ionization (ESI) Mass Detection

>850 Unique Components Detected!

Chromatographic profiles can distinguish components from background ions

Raw LC/MS Data

Isotope Detection

m/z

PROCESSING STEPS: Smoothing (2D) Baseline Filter

800

K-3 min->

Ion: m/z, Apex RT, Volumetric Intensity, "Chromatographic shape"

850

LC/MS Component (Peptide) Detection

EMRT (Exact Mass Retention Time)

PROCESSING STEPS: Lockmass Correction Deisotope to ¹²C Combine Charge States

801

<-3 min->

EMRT: Averaged Monoisotopic Mass Averaged Apex RT Summed Volumetric Intensity

m/z

850

LC/MS Peptide Map Complexity

>850 Unique Components Detected!

Where does the complexity of LC/M ide map analysis originate?

- **Protein Itself**
- Sample Prep Artifacts
- **Chromatography Artifacts**
- **MS** Artifacts
- Process Impurities (HCPs)

Enolase tryptic peptides are detected over ~2.5 orders of dynamic range

Antibody tryptic peptides are detected over ~ 3 orders of dynamic range

Recombinant Factor VIII tryptic peptides are detected over ~ 4 orders of dynamic range

ESI can generate many species with chromatographic alignment to the precursor peptide

Components that demonstrate chromatographic time alignment with a detected peptide

Class of Ion	Ion Mass	Fragmentation
Adducts (e.g. Na+)	M + Adduct	Normal
Neutral Loss (-NH ₃ , -H ₂ O)	M-17 or M-18 Da	Normal/- Loss
In-source fragment	(-) Varies	Normal + Internal
Noncovalent Dimer	M x2	Normal
In Source Oxidation	M+16 Da	Normal/+16Da

Informatics needs to be aware that these processes occur and properly assign these classes of components appropriately

Using chromatographic time alignment to distinguish "real" from "in-source" oxidation

<u>Peptide</u>	RT	m/z	Intensity
T6(3+)	54.4	614.302	1015369
T60x(3+)	47.6	619.637	99732
T6ox(3+)	54.4	619.645	1645

Heterogeneity of Sample:

Modifications
T1*

Complexity from Sample Preparation:

- Under-digested Peptides (Missed Cleavages, e.g. T6-7)
- Over-digested Peptides (SemiTryptic, e.g. T3n6 or T3c3)
 - Additional cleavage at non-canonical peptide bond
 - Can have the same mass as in-source fragments
- Sample Prep Artifacts (e.g. Cys Alkylation)

Reduction and Under-alkylation can result in detection of disulfide bound peptides

RT (Min)	m/z	Charge State	Mass (Da)	Intensity (Counts)
78.1	658.313	4	2629.2202	289578

	Protein	Peptide	Fragment Number	Start	End	Modifiers	Calculated Peptide Mass (Da)	b/y Possible	Control RT (Min)	Control m/z	Control Charge State	Control Mass (Da)	V1 Control Intensity (Cou
1	Enolase	SIVPSGASTGVHEALEMR	1:T6	32	49		1839.9149	34	54.4	614.3133	3	1839.9161	1015170.0 🔺
2	Enolase	IEEELGDNAVFAGENFHHGDKL	1:T51-52	415	436		2440.1294	42	57.3	611.0422	4	2440.1372	917319.0
3	Enolase	TAGIQIVADDLTVTNPK	1:T38	312	328		1754.9414	32	66.0	878.4774	2	1754.9388	761587.0
4	Enolase	AVDDFLISLDGTANK	1:T14	88	102		1577.7937	28	74.4	789.9035	2	1577.7911	651682.0
5	Enolase	NVNDVIAPAFVK	1:T11	67	78		1285.7030	22	58.6	643.8572	2	1285.6985	647772.0
6	Enolase	WLTGPQLADLYHSLMK	1:T35	272	287		1871.9603	30	90.9	624.9948	3	1871.9604	617700.0
7	Enolase	AAQDSFAAGWGVMVSHR	1:T44	358	374		1788.8365	32	63.5	597.2865	3	1788.8357	565335.0
8	Enolase	VNQIGTLSESIK	1:T43	346	357		1287.7034	22	46.5	644.8584	2	1287.7009	563821.0
9	Enolase	LGANAILGVSLAASR	1:T16	105	119		1411.8147	28	68.4	706.9136	2	1411.8113	550375.0
10	Enolase	SGETEDTFIADLVVGLR	1:T45	375	391		1820.9155	32	96.8	911.4658	2	1820.9156	549213.0
11	Enolase	GNPTVEVELTTEK	1:T4	15	27		1415.7144	24	44.0	708.8654	2	1415.7148	525508.0
12	Enolase	IEEELGDNAVFAGENFHHGDK	1:T51	415	435		2327.0454	40	50.7	582.7725	4	2327.0583	372181.0
13	Enolase	YGASAGNVGDEGGVAPNIQT	1:T27	201	233		3256.6099	64	108.4	1086.5535	3	3256.6365	362762.0
14	Enolase	IGSEVYHNLK	1:T23	185	194		1158.6033	18	26.2	580.3069	2	1158.5980	326725.0
15									78.1	658.3130	4	2629.2202	289578.0
16	Enolase	IGLDCASSEFFK	1:T30	243	254		1315.6118	22	68.1	658.8119	2	1315.6079	281786.0
17	Enolase	AADALLLK	1:T42	338	345		813.4960	14	42.4	407.7532	2	813.4906	275217.0
18	Enolase	YPIVSIEDPFAEDDWEAWSH	1:T37	289	311		2827.2805	44	107.1	943.4408	3	2827.2986	269466.0
19	Enolase	HLADLSK	1:T19	132	138		782.4286	12	11.4	392.2197	2	782.4236	253431.0
20	Enolase	TFAEALR	1:T22	178	184		806.4286	12	32.8	404.2184	2	806.4209	239676.0
21	Enolase	TSPYVLPVPFLNVLNGGSHAG	1:T21	141	177		3736.9651	72	108.3	1246.6765	3	3737.0056	239031.0
22	Enolase	YDLDFK	1:T32	258	263		799.3752	10	44.7	400.6925	2	799.3691	222965.0
23	Enolase	WLTGPQLADLYH	1:T35c4	272	283		1412.7089	22	74.3	707.3617	2	1412.7075	181008.0

Reduction and Under-alkylation can result in detection of disulfide bound peptides

RT (Min)	m/z	Charge State	Mass (Da)	Intensity (Counts)
78.1	658.313	4	2629.2202	289578

IGLDCASSEFFK=IGLDCASSEFFK

MS^E Fragmentation

Control: IGLDCASSEFFK=IGLDCASSEFFK D CASSEFFK=IGLDCASSEFFK bMax CD 2630.2354 1/y12-2/y12 23287 Intensity (counts) 11 1/v6 294.1805 11 441.2498 2/v2 657.3233 2/v5 2347.0332 2517.1548 1/y9-2/y12 1/y11-2/y12 570.2886 1948.8025 2118.9321 1116.4865 2/v4 1772.8416 1/y8-2/y9 1/y8-2/y11 917.3942 217.0816 0 0 2000 500 1000 1500 2500 2892.1288 M+H

Cys alkylation artifacts can increase peptide map complexity

Carbamidomethylation on Tyr (Y)

Carbamidomethylation on **Met (M)** +Decomposition (In Source Fragment) Peptide + 57.0215 Da

Peptide + 57.0215 Da Peptide - 48.0034 Da Anal. Biochem. **54**, 170-177 (1973)

J. Mass Spectrom. **35**, 572–575 (2000)

Reduction(DTT)/Alkylation(IA) + DTT Quench (7 Artifact Peptides) Reduction(DTT)/Alkylation(IA) - No DTT Quench (30 Artifact Peptides)

Chron	Chromatogram Spectrum Coverage Map Protein Digests Peak Match Data					n Data	
) 🗔 📝 🖷		1 🔛 🍸 🕱				
	*1 Prote	in		Peptide		Fragment Number	Modifiers
1	IgG1 humania	zed	LLIYSASFLYSGVP	SR		1:T5*	carbamidomethyl Y(1)
2	IgG1_humania	zed	DIQMTQSPSSLS	ASVGDR		1:T1*	Carbamidomethyl M(1)
3	IgG1_humania	zed	WGGDGFYAMDYV	VGQGTLVTVSSA	STK	2:T12*	carbamidomethyl Y(1), Carbamidomethyl M(1)
4	IgG1_humania	zed	DTLMISR			2:T21*	Carbamidomethyl M(1)
5	IgG1_humania	zed	YADSVK			2:T7*	carbamidomethyl Y(1)
6	IgG1_humania	zed	TTPPVLDSDGSFF	LYSK		2:T38*	carbamidomethyl Y(1)
7	IgG1_humania	zed	NTAYLQMNSLR			2:T10*	carbamidomethyl Y(1),Carbamidomethyl M(1)
8	IgG1_humania	zed	WGGDGFYAMDYV	VGQGTLVTVSSA	STK	2:T12*	decom of carbamidomethyl M(1)
9	IgG1_humania	zed	WGGDGFYAMDYV	VGQGTLVTVSSA	STK	2:T12*	Carbamidomethyl M(1)
10	IgG1_humania	zed	DSTYSLSSTLTLS	K		1:T15*	carbamidomethyl Y(1)
11	IgG1_humani	zed	DIQMTQSPSSLS/	ASVGDR		1:T1*	Carbamidomethyl M(1)
12	IgG1_humania	zed	DIQMTQSPSSLS/	ASVGDR		1:T1*	decom of carbamidomethyl M(1)
13	IgG1_humani	zed	WGGDGFYAMDYV	VGQGTLVTVSSA	STK	2:T12*	decom of carbamidomethyl M(1)
14	IgG1_humania	zed	FNWYVDGVEVHN	IAK		2:T23*	carbamidomethyl Y(1)
15	IgG1_humani	zed	WGGDGFYAMDYV	VGQGTLVTVSSA	STK	2:T12*	Carbamidomethyl M(1)
16	IgG1_humani	zed	DSTYSLSSTLTLS	к		1:T15*	carbamidomethyl Y(1)
17	IgG1_humania	zed	DIQMTQSPSSLS/	ASVGDR		1:T1*	Carbamidomethyl M(1)
18	IgG1_humani	zed	TTPPVLDSDGSFF	LYSK		2:T38*	carbamidomethyl Y(1)
19	IgG1_humania	zed	DTLMISR			2:T21*	decom of carbamidomethyl M(1)
20	IgG1_humani	zed	ASQDVNTAVAWYQQKPGK			1:T3*	carbamidomethyl Y(1)
21	IgG1_humani	zed	DTLMISR			2:T21*	Carbamidomethyl M(1)
22	IgG1_humani	zed	DTYIHWVR			2:T3*	carbamidomethyl Y(1)
23	IgG1_humani	zed	ASQDVNTAVAW	YQQKPGK		1:T3*	carbamidomethyl Y(1)

Two modification types where separation is key to producing proper detection and assignment

Deamidation

Glycopeptides

Deamidation: At neutral or alkaline pH Asn can transform to Asp, isoAsp, Asn_{suc}

Deamidation of the PENNY Peptide

Separation of PENNY Peptide and its deamidated forms

Antibody heavy chain glycopeptides demonstrate poor ionization

Antibody Heavy Chain Glycopeptides

LCM53D -- 090108_UBA117_AC_21 -- Function 1 -- m/z = 1259.57 t = 17.03

EEQYNSTYR²⁺

Man5

G1F-GIcNAc G0 G0F-GIcNAc <u>G0</u>

G0-GIcNAc G0F-(GIcNAc-Man)

G2F

G1F

GOF

- 8 ×

Antibody Heavy Chain Glycopeptides: Artifacts of In-Source Fragmentation?

Enolase	Peptide	Мар
---------	---------	-----

		1	1 1
	Top100	All820	
Identified	86%	63%	
Tryptic	44%	9%	
Semi-Tryptic	33%	49%	
Source Fragment	15%	29%	
Source Ox			
Neutral Loss			
ESI Dimer			
Missed Cleavage	8%	12%	

Informatics that only looks for Tryptic fragments does not comprehensively analyze a tryptic peptide map

Peptide mapping does not require database searching

Automating data processing, display, and annotatation in BiopharmaLynx

🎢 BiopharmaLynx - EnoMap													100 C 100 C 100 C
<u>File E</u> dit <u>A</u> nalysis <u>H</u> elp													
🕂 📼 G % 🔯	Chromatogram Spec	trum Coverage Map	Protein Dige	sts Peak Match Data				1			Die	nharm	
1207044C1 02	- 🖬 🖬 🖪	3										JUIDIII	dlunx
A 120704AC1_07	Y Pro Peptide	Fragment Number	Start Er	nd Modifiers Peptide Mass (Da	Control RT (Min)	Control m/z	Control Charge 9	itate Co					
-	Enolase AADALLLK	1:T042	338	345 813.49	50 42.3	407.7537		2					
	Enolase IGLDCA	1:T030	243	254 1315.61	19 68.1	658.8135		2					
	Enolase IGSEVY	1:T023	185	194 1158.60	33 26.1	580.3075		2					
	Enolase IEEELGD	. 1:T051	415	435 2327.04	52 50.6	582.7592		4					
	Enolase GNPTVE	1:T004	15	27 1415.71	16 44.0	708.8656		2					
	Enolase SGETED	1:T045	375	391 1820.91	5 96.7	911.4677		2					
	Enolase LGANAI	1:T016	105	119 1411.81	17 68.3	706.9142		2					
	Enolase VNQIGT	1:T043	Control: 12	0704AC1_02.raw									
	Enolase WLTGP	1:T035					54.07			Soft tol : O cou	unts unts		
	Enolase AVDDFL	1:T014	100 -	•			04.37 T6		74,3604	135			
mala ostas	Enolase NVNDVI	1:1011						65.9676	T14				
Uispiay Options	Enolase IEEELGD	1:T051-052	87.5			i.		58 5264					
Color Key Intensity Hitters	Enolase SIVPSG	1:T006	75 -	'		4	1.4656			96.7145 T45	i_ L _		
Peak Match Intensity Hiter	Enolase LNQLLR Enolase TSPVVLP	1:T050* 1:T021*	62.5		26.1305 32.7498 T23	10.0040.4	50.6279						
Match Intensity 0 %	Enolase VNQIGT	1:T043*		11.2997	1 122	T42!	T51		70 0.45				
J	Enolase YPIVSIE	1:T037	50	Δι Δ15.8772									
0 50 100	Enolase SER Epolase TSEVVLD	1:T048	37.5	T40 24.6	8 ,	11				83 1671			
% Intensity	Enolase AAODSF	. 1:T044*	st 25 ·	16.924	AH-A- 1-39	.6801	- -	-121 -:-1141-11		h A			
-Minimum Intensity Threshold	Enolase GVFR	1:T005	8			MM	11 11	1 hillu	W Sa	ALL LA			
Control: 5000 counts	Enolase ANIDVK	1:T012-013*	면 12.5 모	J. M. V. Winn		S	- www	0	- vo	in word raw he	~~~		
Appletor accepto	Englase NVNDVI	1:T011-012	80.0	- M Im A Maring	MULLIN Pro	When we	Montherit	᠆᠋᠊ᡀᡒᠬᠬᡃᢧ᠕ᠰᡀ᠕ᡁᡤ	and the state of the	୳୷ୄ୷୷୷୷୷୲୷ ୗ _ୖ ୷୷	t		
Analyte: 5000 counts	Enolase SK	1:T008	₽ 1.125	man milda man	MACON MARCON	my in	mm	A Jum MA M	M 1. ~	1 Minune may 100	المحملين		
	Enolase DOK	1:T013	Xe		[] [] [] [] [] [] [] [] [] [] [] [] [] [5036	AN VIL	A. MENAL	14/1	Vev II VI			
	Enolase K Enolase R	1:T025 1:T026	는 -25 · 양				_	- I				I	00.401
			-37.5	11.2991			Protein:	Enolase				Control cove	rage: 99.1%
			-50		T23 - T22 -	42.2868	Descripti	on: Eno				Analyte cov	erage: 98.4%
					20.1305 32.7498	V							
Control: 1207040C1_02 / Apalyte: 1207	704001 07		-62.5	15 3044		i. a							
control reprovince_de / malyan repr	ionici_or		-75										
			-87.5				1 • 1	MICKIVADS	ar.	VINCER	MET PERSON R	DETUDECAST	CUMENT END
			400				···	AV SILV LAC			VILLITINOVI	KST4130KS1	OVIDALLIN
			-100 -	562 21.7	62	41.7562	1:51	GDK SK M <mark>M</mark> GF	G	VLHAVK <mark>N</mark> V <mark>N</mark> D	VIAPAFVKA <mark>N</mark>	IDVKDQKAVD	DFLISLDGTA
							1:101	NKSKLGAN	I	LGVSLAASRA	AAAEK <mark>N</mark> VPLY	KHLADLSKSK	TSPYVLPVPF
			Analyte: 12	0704AC1_07.raw			1:151	LINVLINGEST	64	GGALALOEFM	TAPTGARTEA	EALRIGSEVV	HNLKSLTKEP
								La Theodor		oomnuger M	INI IONULI N		
							1:201	YGASAGNVO	Ð	EGGVAPNIQT	AFEALDLIVD	ALKAAGHDGK	VKIGLDCASS
							1:251	EFFKDGKYI	L	DFKNPNSDKS	KWLTGPQLAD	LYHSLMKRYP	IVSIEDPFAE
							1:301	DDWEAWSHE	TE	KTAGIOTVAD	DLTVTNPKRT	ATATEKKAAD	ALLEKVNOTG
							1.051	III CECTOR	-	NCER CONCLUS			DECOTINGE
							1:351	TESESTRA	u	DZE AREMEV <mark>M</mark>	VSHRSGETED	TTTADLVVGL	RIGULKIGAP
							1:401	ARSERLAKI	N	QLLRIEEELG	DNAVF AGENF	HHGDKL	
Overriding Automated Assignments

4	Enolase	AVDDFL	1:T14	88	102	1577.7937
5	Enolase	NVNDVI	1:T11	67	78	1285.7030
6	Enolase	WLTGP	1:T35	272	287	1871.9603
	— I					

User can:

- Replace an assignment (Alternative)
- Manually edit an assignment
- Remove an assignment

ľ	🔿 Edit Assignment						Replace Assignment					
t	C Doplace Accimpost	Protein	Peptide	Fragment N	Start	End	Modifiers	Calculated P	Control b/y F	Control Assi	Analyte b/y	Analyte Assi
┝	 Replace Assignment 	Enolase	IVADDLTVTNPK	1:T38n5*	317	328	Deamidation N(1)	1285.6765	5	6.5	6	5.6
	C Remove Assignment											

LC/MS^E Data Acquisition

Time Alignment of Low Energy (MS) and Elevated (MS^E) Energy Data

MS Data

MS^E Data

m/z (50->1500)

m/z (50->1500)

Yeast Enolase Digest

Retention Time (80 min)

BiopharmaLynx 1.2 : Validate Peptide Map Assignments with MS^E Fragmentation Data

♥ ¹ Control b/y Found	Control Assigned Intensity (%)	Control b/y List
47	66.7	b2;b3;b4;b7;b8;b9;b10;b11;b12;b13;b14;b15;b17;b18;b19;b20;b21;b22;b24;b25;b26;b27
33	94.1	b2;b3;b4;b5;b6;b7;b8;b9;b10;b11;b14;b20;b21;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y1

Best Match	
Equivalent Match	
Better Alternative	
Below Minimum	

🔀 BiopharmaLynx - Enolase						_ <u>-</u> • ×
<u>Eile Edit A</u> nalysis Libraries <u>H</u> elp						
🗋 • 🚰 • 🔙 🚽 🕨						
🐼 🗶 🖸 📷	Chroma	togram Spectrum C	overage Map Protein Digests	Peak Match Data		
G. Pentide Map 1		à 🖬 🔽 🖶		<		
A Poplide Map 2		Control Mass (Da)	Control Intensity (Counts)	▼ ¹ Control b/v Found	Control Assigned Intensity (%)	Control b/y List
C Pepune_map_z	1	3256.5967	362763.0	47	66.7	b2;b3;b4;b7;b8;b9;b10;b11;b12;b13;b14;b15;b17;b18;b19;b20;b21;b22;b24;b25;b26;b27
	2	2827.2642	269466.0	33	94.1	b2;b3;b4;b5;b6;b7;b8;b9;b10;b11;b14;b20;b21;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y1
	3	2440.0828	917319.0	30	51.3	b2;b3;b4;b5;b6;b7;b8;b9;b10;b21;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y13;y14;y15;y1
	4	2636.3582	112859.0	30	85.9	b2;b3;b4;b5;b10;b11;b13;b14;b15;b16;b17;b18;b19;b20;b21;b22;y3;y5;y6;y7;y8;y9;y10
	5	2637.3428	126891.0	29	76.0	b2;b3;b4;b5*;b9*;b10*;b13*;b14*;b15*;b16*;b18*;b20*;b21*;b22*;y3;y4;y5;y6;y7;y8;y
	6	1754.9388	761588.0	28	81.9	b2;b3;b4;b5;b6;b7;b8;b10;b11;b12;b13;b15;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y1
	7	1820.9156	549213.0	28	85.0	b3;b4;b5;b6;b7;b8;b9;b10;b11;b12;b13;b14;b15;b16;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10;y1
	8	18/1.93//	61//01.0	27	34.5	D1;D2;D3;D4;D5;D6;D7;D8;D9;D1;D13;D14;Y1;Y2;Y3;Y4;Y5;Y6;Y7;Y8;Y9;Y1;Y1;Y12;Y13;
	9	1700 0120	372101.0	2/	51.3	02;03;04;05;00;07;00;09;92;93;94;95;90;97;90;97;910;911;912;913;914;915;916;917;91 h2;h2;h4;h5;h4;h5;h4;h5;h0;h10;h110;h10;00;20;20;40;50;60;70;00;00;010;d10;d10;d10;d10;d10;d10;d10;
	11	3736.9600	236758.0	25	67.3	b2;b5;b6;b7;b8;b10;b11;b13;b24;b25;b26;b27;y3;y4;y5;y6;y7;y6;y7;y8;y9;y11;y12;y13;y14;y13 b4;b5;b6;b7;b8;b10;b11;b13;b24;b25;b26;b27;y3;y4;y5;y6;y7;y8;y9;y11;y12;y13;y14;y13;y22;y29;y1
	12	1540.7324	46830.0	25	59.3	v1:v2:v3:v4:v5:v6:v8:v9:v10:v11:v12:v13:v14:(v15b2):(v15b3):(v15b4):(v15b5):(v15b6)
	13	1853.9266	11059.0	25	27.9	b1;b2;b3;b4;b5;b6;b7;b8;b9;b11;b13;b14;v1;v2;v3;v4;v6;v7;v8;v10;v11;v12;v13;v14;v1
	14	1577.7911	651683.0	23	59.5	b2;b3;b4;b5;b6;b7;b8;b9;b10;b12;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y13
	15	1612.8234	119661.0	23	22.7	b1;b2;b3;b4;b5;b6;b7;b8;b9;b11;b13;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y13
	16	1839.8937	1015171.0	22	70.1	b2;b3;b9;b12;b15;b16;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y13;y14;y15;y16
	17	1411.8113	550375.0	21	68.9	b3;b4;b5;b6;b7;b8;b9;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11;y12;y13;y14
	18	3719.9314	6098.0	21	35.4	b4;b5;b7;b8;b10;b11;b13;b24;b25;b26;b27;y3;y4;y6;y7;y8;y9;y10;y13;y22;y29
	19	2967.5347	52758.0	20	29.5	b4;b5;b6;b7;b8;b10;b11;b13;b24;b25;b26;b27;y2;y3;y4;y5;y21;y23;y24;y25
	20	3412.7085	16117.0	20	22.6	b9;b12;b13;y1;y2;y4;y5;y6;y8;y9;y10;y12;y13;y15;y16;y20;y21;y22;y26;y30
	21	1/40.9543	47944.U E2E170.0	19	82.9	D2;D3;D4;D6;D7;D8;D9;Y2;Y3;Y5;Y6;Y7;Y8;Y9;Y1U;Y11;Y12;Y13;Y14
	22	1915./198	525179.0	18	66.U	D2;D3;D4;D5;D6;D7;D3;D9;Y2;Y3;Y4;Y5;Y6;Y7;Y8;Y9;Y1;Y1; h2;h4;h5;h6;h7;h8;h1;h1;1;h12;h12;h24;h25;h25;h27;u2u;0;u10;u26
	23	1572 8005	7527.0	10	14.0	v1v2v3v7v8v10v11v13v(v14b4)v(v14b5)v(v14b6)v(v14b6)v(v14b8)v(v14b8)v(v14b0)v(v14b10)
	25	2308.9949	3224.0	10	23.0	h5-h6-h7-h8-h9-y2-y3-y5-y6-y7-y8-y12-y13-y14-y15-y17-y18-y20
	26	1287.7009	563821.0	17	55.0	b2;b3;b4;b5;b6;b7;v1;v2;v3;v4;v5;v6;v7;v8;v9;v10;v11
	27	2629.1616	289579.0	17	81.4	1/b3;1/y1;1/y5;1/y9-2/y12;1/y11-2/y12;1/y12-2/b5;1/y12-2/b6;1/y12-2/y10;1/y12-2/b9;1
	28	1639.8041	23024.0	17	29.0	y1;y3;y4;y8;y9;y10;y11;y12;(y16b2);(y16b3);(y16b4);(y16b5);(y16b6);(y16b7);(y16b8);(
	29	1370.6373	6456.0	17	15.5	y2;y3;y4;y6;y7;y8;y9;(y11b2);(y11b4);(y11b5);(y12b3);(y12b6);(y12b7);(y12b8);(y12b9)
Diselau Ontinga	30	1285.6985	647773.0	16	57.2	b2;b3;b4;b5;b6;b7;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10
Display Options	31	1646.7444	11468.0	16	30.9	y1;y2;y4;y6;y8;y10;y11;y12;y13;y14;(y15b2);(y15b3);(y15b5);(y15b6);(y15b7);(y15b9)
Color Key Intensity Filters	32	1315.6079	281786.0	15	70.6	b2;b3;b5;b6;y1;y2;y3;y4;y5;y6;y7;y8;y9;y10;y11
Common Match	33	1045.5109	47815.0	15	34.7	y1;y2;y3;y4;y5;y6;y7;y8;(y9b2);(y9b3);(y9b4);(y9b5);(y9b6);(y9b7);(y9b8)
	34	2164.1206	3285.0	15	40.7	02(03)04(05)010(011)013(014(010)017(010)019(020)021)(912022)
Control Unique	36	1770 7991	2909.0	15	11.5	b2;b3;b4;b5;b6;b7;b8;b9;b10;b11;v1v12;v13;v14;v15
Analyte Unique	37	1158,5980	326725.0	14	34.6	b2;b3;b4;b8;b9;v1;v2;v3;v4;v5;v6;v7;v8;v9
	38	1412.7074	181008.0	14	51.7	b1;b2;b4;b6;b7;v1;v2;v3;v4;v5;v8;v9;v10;v11
Unmatched Peptide	39	1140.5765	7771.0	14	34.6	b2;b3;b4;b8;b9;y1;y2;y3;y4;y5;y6;y7;y8;y9
Best Match	40	1257.5533	6451.0	14	23.2	y2;y3;y5;y6;y7;y8;y10;(y11b2);(y11b4);(y11b5);(y12b3);(y12b6);(y12b7);(y12b8)
	41	813.4906	275217.0	13	62.1	b2;b3;b4;b5;b6;b7;y1;y2;y3;y4;y5;y6;y7
Equivalent Match	42	988.4925	10045.0	13	29.4	y1;y2;y3;y4;y5;y6;y7;(y8b2);(y8b3);(y8b4);(y8b5);(y8b6);(y8b7)
Better Alternative	43	1855.8873	99714.0	12	46.6	b2;b3;y2*;y5*;y6*;y7*;y9*;y11*;y13*;y14*;y15*;y16*
	44	1309.5729	56172.0	12	42.4	b3;b4;b8;b9;b10;b11;b12;y2;y3;y4;y6;y7
Below Minimum	45	1559./5//	8603.0	12	22.0	b2;b3;b8;b9;b10;b12;y1;y2;y3;y4;y11;y12
	40	744 4240	7397.0	12	24.2	52(50)(010)(011)(012)(015)(015)(015)(019)(019)(019)(019)(019)(019)(019)(019
	47	744.4240	10595510		00.4	D2(D3(D4)D5(D6)(Y1)(Y2)(Y3)(Y4)(Y5)(Y6
						<u>•</u>
						Advanced
Data loaded.						

BiopharmaLynx 1.2 : Validate Peptide Map Assignments with MS^E Fragmentation Data

- 1. Fragmentation patterns can be compared between analyses
- 2. Potential alternative peptide assignments tested and selected
- 3. Modifications can be assigned to specific residues

Identifying Unknown Process Impurity Proteins (HCP's)

Match to: Protein_X Score: 89 LC/MS^E high definition proteomics 1 MTQFTDIDKL AVSTIRILAV DTVSKANSGH PGAPLGMAPA AHVLWSQMRM Data 51 NPTNPDWINR DRFVLSNGHA VALLYSMLHL TGYDLSIEDL KQFRQLGSRT 101 PGHPEFELPG VEVTTGPLGQ GISNAVGMAM AQANLAATYN KPGFTLSDNY 151 TYVFLGDGCL OEGISSEASS LAGHLKLGNL IAIYDDNKIT IDGATSISFD 201 EDVAKRYEAY GWEVLYVENG NEDLAGIAKA IAQAKLSKDK 251 GYGSLHAGSH SVHGAPLKAD DVKOLKSKFG FNPDKSFVVP OEVYDHYOKT 301 ILKPGVEANN KWNKLFSEYQ KKFPELGAEL ARRLSGQLPA NWES 351 AKDSAVATRK LSETVLEDVY NOLPELIGGS ADLTPSNLTR WKEALDFOPP 401 SSGSGNYSGR YIRYGIREHA MGAIMNGISA FGANYKPYGG TFLNFVSYAA 451 GAVRLSALSG HPVIWVATHD SIGVGEDGPT HOPIETLAHF RSLPNI 501 PADGNEVSAA YKNSLESKHT PSIIALSRON LPOLEGSSIE 551 DVANPDIILV ATGSEVSLSV EAAKTLAAKN IKARVVSLPD FFTFDKOPLE BiopharmaLynx[™] 601 YRLSVLPDNV PIMSVEVLAT TCWGKYAHQS FGIDRFGASG KAPEVFKFFG 651 FTPEGVAERA QKTIAFYKGD KLISPLKKAF EXIT 119 No Name 1/2 ,MILE ProteinLynx Global Server MASCOT .PKL Export File Other Bioinformatics Tools

Unassigned Components

- LC/ESI-Tof MS a powerful tool for protein characterization and peptide map development
- The resulting data sets are complex
 - Sample Heterogeneity
 - Sample Processing Artifacts
 - LC and MS Analysis Effects
- Our understanding of these processes has enhanced our ability to build better informatics tools.
 - Analysis can be automated (Days -> Minutes)
 - Increase uniformity and confidence of results
 - Eases sample-sample comparisons

Examination of a Biotherapeutic Characterization Strategy.

GEN Webinar Series 2009

Adam Lucka

Alexion Pharmaceuticals Protein Characterization Group

iciure and Huma

MW~148,030 Da

Characterizing Biotheraputics and Impurities

- Bulk Drug Substance: Formulated drug material that containing all molecular variants of the drug at the time of manufacture. (glycoforms, PTM, CAM, minor clips)
- Product Related Impurities: Molecular variants of the drug that may be present at the time of manufacture new lots/processes or formed during storage. (Truncated forms, aggregation, isomerized, mismatched S-S, deamidated, oxidized, etc.)

Protein Characterization (

- Mass Spectrometry
 - MALDI-ToF: Intact MW, Free Glycan, PMF
 - ESI-ToF: Intact MW
 - ESI-Q-IM-ToF: Peptide Mapping, Disulfide Analysis, Small Molecule

HPLC

- Oligosaccharide
- Monosaccharide
- Sialic Acid
- SEC, RP, WAX

N-terminal Sequencing AAA Gel Based Separations Chip Based Separations AFFF-MALS Ion Mobility Calorimetry Circular Dichroism BIACORE SPR **Drug Bubble Constructer Texion's Approach to Drug Substance Characterization Top-Down, Bottom-Up, Inside-Out**

- Intact MW: Top Down
- Proteolytic Digests Peptide Maps: Bottom Up
 MS/MS sequencing: Bottom Up
- Non-reduced Digests for Disulfide Confirmation: Inside Out
- Glycopeptide and Free Glycan analysis: Inside Out

Intact MW: Top Development Product Related Substance

Every Day Matters[™]

De-Glycosylated mAb

Rise to Greatness[™]

Trypsin Digestion RP-HPLC-MS

• MS Data:

 Accurate Retention time

 Accurate Mass
 Peptide Confirmation via Fragmentation (MS/MS or MS^E)

Use and correlate data from multiple techniques: Work for 100% primary sequence coverage

mAb Drug Substance Pent

Rise to Greatness[™]

0-60 min

60-120 min

ptides Identified by RT, Accurate Man

Every Day Matters™

Accurate RT

Disulfide Confirmation Via Non-Reduced Peptide Mapping

Intra and Four Additional Inter Disulfide Cross-Links 2-2, 6-6, 11-11, 17-17

Disulfide Confirmation more complex

Z/4

18 total disulfides 11 unique disulfides

N-Linked Glycopeptide EST-

Analytical Summary of mAb LC-MS De

					·		
% Expected Heavy Chain Seque	nce Identified			100%			
% Expected Light Chain Seque	nce Identified	100%					
Terminal Analy	vsis			Sequences			
Heavy Chain N-terminal				As expected		HT1 Cys2	
Light Chain N-terminal				As expected			
Full Heavy Chain C-terminal (R	elative %)	1	4.0	0% intact peptide			
Clipped Heavy Chain C-termina	l (Relative %)	86	i.0 '	% clipped peptide			
Glycosylation An	alysis				ļ		
Glycosylation Site (Asn ₂₉₈)		100% Occupar	icy foi	of Asn ₂₉₈ observed. No evidence r O-glycosylation		All I ev	
Detected Glycopeptides	Relati	ve % Deamidation An			ysis		
G0F-ManGN	5.	6	Peptide HT22 (303-318) Asn			$h_{316} \rightarrow Asp_{316}$	
Man5	7.	2	1	Peptide H132 (372-393) Asn ₃₈₅	\rightarrow Asp) ₃₈₅	
G0F-GN	28	.2	1	Peptide I T9* $(127, 142)$ Asn	$\rightarrow Asp$	² 435	
G1F-GN	5.	3	1	Peptide LT12* (150-169) Asn ₁₃	$\rightarrow As_1$.9 ₁₃₇	
G0F	100).0]		3 110	2158	
G2F-GN	0	1	Oxidation Analy	sis			
G1F	.5	1	Peptide HT8 (73-87) M ₈₁				
G2F	9.	7	1				
G1F+NGNA	3.	3	1				

1.5

G2F+NGNA

HT3s-sHT9 (Cys ₂₂ – Cys ₉₆)
HT11s-sLT18 (^H Cys ₁₃₆ - ^L cys ₂₁₄)
HT12s-sHT13 (Cys ₁₄₉ – Cys ₂₀₅)
HT17ssss-ssssHT17 (Cys ₂₂₄ – Cys ₂₂₄), (Cys225 – Cys225), (Cys228 – Cys228), (Cys231 – Cys231)
HT19s-sHT24 (Cys ₂₆₂ – Cys ₃₂₂)
HT31s-sHT36 (Cys ₃₆₈ – Cys ₄₂₆)

LT2s-sLT5 (Cys₂₃ – Cys₈₈)

LT9s-sLT16 (Cys₁₃₄ – Cys₁₉₄)

All Disulfides confirmed with minor evidence of alternative isoforms

Deamidation Analysis	<u>% Unmodified</u>	<u>% Deamidated</u>
Peptide HT22 (303-318) $Asn_{316} \rightarrow Asp_{316}$	43.7	56.3
Peptide HT32 (372-393) Asn ₃₈₅ →Asp ₃₈₅	59	41
Peptide HT36*(418-440) Asn ₄₃₅ \rightarrow Asp ₄₃₅	78.8	21.2
Peptide LT9* (127-142) $Asn_{137} \rightarrow Asp_{137}$	80.6	19.4
Peptide LT12* (150-169) Asn ₁₅₈ →Asp ₁₅₈	94.1	5.9
	*	

Oxidation Analysis	<u>% Unmodified</u>	<u>% Oxidized</u>
Peptide HT8 (73-87) M ₈₁	5.2	94.8

ict Related Impurities

10.00

Minutes

Deamidation

Single Asparagine Residue in Recombinant mAb's Through LC-MS Peptide Mapping. Lucka A. et al. ASMS 2009

Rise to Greatness™

dditional Characterization Workflor Records to get 100 /0 primary Sequence coverage

- MALDI Strategies for PMF multiple sample preps + composite searches
 - Sub-ambient trapping for nano/cap LC Peptide Mapping
 - Alexion's Bioinformatics Strategy for rapid data reduction

Rapigest Digestions via

Non-Reduced Reduced/Alkylated Digestion time Same Sample Tree as Complete Incomplete for Reduced/Alkylated Acidification nBD BD nBD BD Sample Spottings SA CHCA CHCA SA CHCA SA CHCA SA Linear Mode Data Collection SA Linear SA Linear

Rise to Greatness™

Sub-ambient Trapping of Hydren

Every Day Matters[™]

1100 HPLC

Synapt HDMS QToF-IMS

Nano/Cap RP C-18 column

Solvent A: 0.1% FA in H_2O Solvent B: 0.1% FA in ACN

Peptides were eluted via linear gradient from 2-50% Solvent B in 90 min flow rate: 0.3-5 μ L/min. ESI 3.5 KV and a *m/z* range of 50-3000 was analyzed.

Room Temperature Enrichment no Column

Proteomic Search Engines are Inadequate for Protein Characterization

- System Issues
 - Uses single search mode mono vs. average mass
- Identification Issues
 - Incorrect Id's with too many mods pre-selected
- Missing Features
 - Neglect retention time and archival information
 - Neglect known assay artifacts
- Data Presentation Issues

No back association to the LC-MS chromatogram/MALDI
 spectra - false positive protein identifications
 false positive peptide identifications for correct protein
 missed peptides for a correctly identified protein

Data Analysis is the Bottleneck for Protein Characterization

Het	terogeneity / PTM, CAM	Δ Mass Change (Da)		
	C-terminal Lysine	-128.1726		
	Disulfide	-2.0158		
ed	Pyroglutamation	-17.0306		
	G0F Glycan	1445.3355		
С	arboxymethylation of Cys/Met	58.0055		
	SNP	Varies		
hn	Oxidation	15.9949		
ΨΠ	Acetylation	42.0106		
	Deamidation	0.984		

Alexion's Bioinformatics Strategy

confirmation, after which only Accurate Mass and RT time pairs are screened

- Single search to identify all known peptides, regardless of signal intensity, currently requires manual interrogation of the data
- Identifies all potential peptides that meet criteria
- Protein specific database for sequence id/confirmation:
 - normal, mis-cleaved, nonspecific cleavages, single point mutations, PTM, CAM, cross-linked, and assay related peaks
- Correlates peptide m/z, charge, retention time, intensity and fragmentation. Tracks and trends peptide information in an archival Master Table which is chromatography and molecule specific.
- Suggests mods for unknowns based on the specific protein
- Visual Results output

Distilled BiopharmaLvax

Peptide	Fragment Number	Modifiers	Control RT (Min)	Control Intensity (Counts)	Control m/z	Control Charge State	Control Mass (Da)	b/y Possible	Control b/y Found	Control b/y %	Control b/y List	Analyte RT (Min)	Analyte Mass (Da)	Delta RT (Min)	Delta Intensity (%)	Comment
		Carboxymethyl														
CKVSNK	1:T024-025*	C(1)	17.8	11979	736.3651	1	735.3571	10	0	0		17.7	735.3548	0.1	10.6	
			18.7	2130	618.3457	1	617.3378					18.7	617.3371	0	9.8	
DYEK	2:T014/y4		19.4	4889	554.2432	1	553.2353	6	4	66.7	y1;y2;(y4b2);(y4b3)	19.2	553.2368	0.1	12.6	
ADYEK	2:T014x2		19.4	7876	1249.553	1	1248.545	8	0	0		19.2	1248.549	0.1	7	
ADYEK	2:T014		19.4	113777	625.2786	1	624.2707	8	6	75	b3;b4;y1;y2;y3;y4	19.3	624.2691	0.1	7.9	
			19.5	2089	647.2622	1	646.2543									
KPGASVK	1:T002x2		20.9	4015	1371.829	1	1370.821	12	0	0		20.9	1370.826	0	3.4	
KPGASVK	1:T002-NH3		20.9	2064	335.1991	2	668.3824	12	7	58.3	b1;b2;b4;b5;y1;y3;y4					
PGASVK	1:T002/y6		20.9	8737	558.3215	1	557.3136	10	8	80	y1;y3;y4;y5;(y6b2);(y 6b3);(y6b4);(y6b5)	20.9	557.3146	0	17.9	
											b1;b2;b4;b5;b6;y1;y3					
KPGASVK	1:T002		21	210469	686.4184	1	685.4105	12	10	83.3	;y4;y5;y6	21	685.4113	0	11.6	
			21.1	1431	739.3319	1	738.324									
			21.1	6890	708.4005	1	707.3925					21.1	707.3922	0	6.4	
SFNR	2:T017x2		25.4	8243	1045.515	1	1044.507	6	0	0		25.3	1044.509	0.1	1.8	
SFNR	2:T017		25.4	28977	523.2538	1	522.2459	6	2	33.3	y1;y3	25.3	522.2458	0.1	2.7	
			25.5	1743	1067.497	1	1066.49									
			26.1	1289	868.4534	1	867.4455									
VDKTVER	1:T014-015		26.1	6845	846.468	1	845.4601	12	1	8.3	y5	26.1	845.4593	0.1	30.1	

RT, Intensity, m/z, and Charge State

Alexion's Bioinformatics – M

259

280.99

310.95

Assay Artifact

Assay Artifact

Assay Artifact

259.1

281.19

311.15

Unknowns (RT~2.5 min.)

DTT Dimer + Alk

HQ Buffer, RapiGest, Trypsin Digest Assay

2.53

24.00

16.87

2.30

23.90

16.70

3.00

24.20

17.20

0.24

0.14

0.16

Every Day MattersTM

Molecular Stat etention Time Stat Species ID Trypsin # AA Range Mono MH+Ave. MH+PartialsSequence Ave RT Min RT Max RT SD RT 1951.102 ADIQMTQSPSSLSASVGDR [1-19] 1949.923 31.15 30.70 31.60 0.18 0 ADIOMTOSPSSLSASVGDRVTITCGASENIY -2 C* (gel [1-39] 4247.013 4249.64 GALNWYQR (1 * Carbamidomethyl (C)) 43.40 43.40 43.40 /TITCGASENIYGALNWYOR (1 * 42.34 2 C* (ael) [20-39] 2316.108 2317.561 0 darbamidomethyl (C)) 41.60 45.10 1.23 /TITCGASENIYGALNWYQRKPGKAPK (1 * -4 C* (ael [20-46] 3022.557 3024.439 2 darbamidomethyl (C)) 38.02 38.00 38.10 0.04 3-4 [40- 46] 725.467 725.901 1 KPGKAPK 3.03 0 0.06 som erso [40- 62] 2366.355 2367.77 KPGKAPKLLIYGATNLADGVPSR 6.25 3-5 2 44-46] 315.203 315.389 APK 2.62 0.13 4 0 2.40 z./0 40 LLIYGATNLA isoDGVPSR 36.00 36.90 [47- 62] 1659.906 1660.892 36.44 0.20 5 isoD [47- 62] 1659.906 1660.892 40 LLIYGATNLADGVPSR 37.14 36.80 37.80 0.22 5 SGSGSGTDFTLTISSLQ.....YYCQNVLNTPL 6 C* (gel) [63-104] 4550.134 4552.922 0 1 GQGTK (1 * Carbamidomethyl (C)) 50.55 50.50 50.70 0.08 [105-108] 488.308 488.599 0 VEIK 10.63 9.70 11.20 0.42 7 [105-109] 10.48 11.50 7-8 644.409 644.785 1 VEIKR 9.90 0.62 RTGGGGSGGGGGGGGGGGQVQLVQSGAEV 8-9 [109-137] 2488.213 2489.597 peptides ~ MW **Fragmentation** RTGGGGSGGGGGGGGGGGGOVOL KKPGASVK 8-10 [109-144] 3155.615 3157.395 2 • ₀ 9 [110-137] 2332.112 2333.411 TGGCGSGGGGGGGGGGQVQLVQSGAEVK 27.24 26.60 28.50 0.55 TITCGASENIYGALNWYQR (1 * 2333.56 [20-39] 2332.103 0 arbamidomethyl (C)) 40.35 39.71 41.61 0.57 C*(gel) or TGGGGSGGGGGGGGGGGGQVQLVQSGAEVK 2999.514 3001.209 KPGASVK 26.15 9-10 [110-144] 26.10 26.20 0.07 10 [138-144] 686.42 686.822 0 KPGASVK 4.44 3.30 4.90 0.65 Digest Artifact DAPGOGLEWMGEILPGSGSTEYTENFK (1 * 0 Pro-qlu (N-term peptide)) 2909.33 2911.142 45.90 45.70 46.10 13 PG [164-190] 0.28 Digest Artifact Miscleavage s [164-192] 3180.458 3182.416 ENFKDR (1 * Pyro-glu (N-term pepuge)) 13-14 PG 44.0 DIQMTQSPSSLSASVGDR (1 * Acetyl (N-1991.934 1993.139 term)) 34.00 [1-19] 0 34.03 34.10 0.05 1 Acet VTITCGASENIYGALNWYORSEDTAVYYCAR 0 ([2s-s17 [20-39s-s213-223] 3533.61 3535.857 sulfide bonded_1 * Additional C & N Term 39.10 39.00 39.20 0.14 SGSGSGTDFTLTISSLQ.....NVLNTPLTFGQ GTKVSCK (Disulfide bonded, 1 * Additional (Disulfide Linkages 46.75 6s-s11 [63-104s-s145-148] 4926.312 4929.395 0 & N Term) V\$CKVSCK (Disulfide bonded. 1 * Additional 11s-s11 [145-148s-s145-148 869.422 870.073 C & N Term 6.80 6.30 7.30 0.71 SCKSEDTAVYYCAR (Disulfide bonded, 1 * 11s-s17 145-148s-s213-223 1710.746 1711.896 0 Additional C & N Term) 22.77 22.40 22.90 0.14 253 253.2 Assay Artifact 6.25 **Artifacts** ssay HQ Buffer, RapiGest, Trypsin Digest Assay

Alexion's . utputes

	Peak	Ret Time	m/z	charge	MH+	% Base	Trypsin		Comments
	(#)	(min)	()	(+)	(Da)	Peak	Frag (#)	Range	Sequence (MH _{iffoni} MH fave)
[1	3.2	494.3	1	494.30	12.9	11 C* (sol)	[145-148]	VSCK (1 * Carboxymethyl (C)) (494.228 : 494.584)
	2	4.8	343.75	2	686.49	12.6	10	[120 144]	
	3	10.1	322.75	2	644.49	5.2	7-8	Green:	Mass. RT. Fragmentation
	4	10.6	488.4	1	488.40	2.4	7		i assi i aginentati sh
	5	11.2	607.45	1	607.45	2.8	15	[193-197]	VTMTR (607.323 : 607.746)
	6	16.8	311.02	1	311.02	2.1	-	Assay Artifact	DTT Dimer + Alk (310.95 : 311.15)
							15 N-Term		
	7	18	665.5	1	665.50	1.0	CoMe	[193-197] 🛛	gest Artifact VTMTR (1 * Carboxymethyl (N-term) (Sol)) (665.329: 665.782)
	Q	21 /	110 15	1	440.15	3.3	-	Assay Artifact	hital Accay Artifact
C	'ro	cc_l i	nkc	1	447.08	1.0	-	Assay Artina	IIILE: ASSAY AILIIA <mark>ul</mark>
		33-LI	IINS	3	1711.97	2.3	11s-s17 [<u>145-148s-s213-2</u>	26 SEDTAVYYCAR (Disulfide bonded, 1 * Additional C & N Term) (1710.746: 1711.896)
Ţ	11	25.6	668.65	2	1336.29	76.9	17 C* (sol)	[213-223]	SEDTAVYYCAR (1 * Carboxymethyl (C)) (1335.552 : 1336.407)
	12	26	830.61	3	2489.81	2.9	8-9	[109-137]	RTGGGGSGGGGGGGGGGGQVQLVQSGAEVK (2488.213 : 2489.597)
							1 N-Term		
	10			3	2009.06	16.6	CoMe	<u>[1-19]</u> □	ges Artifact ADIQMTQSPSSLSASVGDR (1 * Carboxymethyl (N-term) (Sol)) (2007.929 : 2009.138)
	lod	lifica	tion		2333.39	56.8	9	[110-137]	TEGGGSGGGGGGGGGGQVQLVQSGAEVK (2332.112:2333.411)
Ľ							9 N-Term o		OWP Mass and /or D((Term or K) (Sol))(
	15	27.8	797.85	3	2391.53	4.4	K CoMe	[110-13	low: Mass and/or int
	16	31.2	651.09	3	<u>1951.25</u>	65.2	1	[1- 19]	A DIQMTQSPSSLSASVGDR (1949.923 : 1951.102)
		<u> </u>	CCE 1E		1002 43	<u> </u>	1 Acet	[1- 19]	ADIQMTQSPSSLSASVGDR (1 * Acetyl (N-term)) (1991.934 : 1993.139)
Di	ffei	rent	nen	tide	SN	MW	3-5 : 11-12		PG APKLLIYGATNLADGVPSR (2366.355: 2367.77) :VSCKASGYIFSNYWIQWVR (1 * Carboxymethyl (C)) (
			PCP			4	<u> </u>	40-62]: [145-1	62865.143 : 2366.677)
ŀ	19	36.2	554.36	3	1661.06	3.0	5 isoD	47-62	LIYGATNLAisoDGVPSR (1659.906 : 1660.892)
ŀ	20	37.1	554.37	3	1661.09		5	[47- 62]	LIYGATNLADGVPSR (1659.906 : 1660.892)
	21	38	605.99	5	302	8.5	<u>2-4 C* (sol)</u>	20-46	/TI CGASENIYGALNWYQRKPGKAPK (1 * Carboxymethyl (C)) (3023.541 : 3025.424)
Ť.	-	noriz	atic		1090.91	57.7	16	198-212	DTSTSTVYMELSSLR (1689.8 : 1690.851)
-			aur		2318.39	8.2	2 C* (sol)	20-39	/TITCGASENIYGALNWYQR (1 * Carboxymethyl (C)) (2317.092 : 2318.546)
Ē	24	42.4	000.75	4	3199.90	28.5	13-14	[164-192]	QAPGQGLEWMGEILPGSGSTEYTENFKDR (3197.484 : 3199.446)
ŀ	25	44	976.68	3	2928.02	0.2	13	164-190]	QAPGQGLEWMGEILPGSGSTEYTENFK (2926.356: 2928.173)
	~		1061 10		3192.18	1.4	13-14 PG	[164-192]	8182.416)
N	lic-	.clea	vad		1091.43	57.0	12	[149-163]	AGYIFSNYWIQWVR (1889.933: 1891.115)
	13	Cica	vag		4553.78	23.9	6 C* (sol)	[63-104]	SG565(C)) (4551.118 : 4553.906)
	29	50.9	853.75	8	6822.	4.4	Unknown		kea: Unknown
	30	51.4	916.01	3	2746.01	10.8	18	[224-247]	YFGSSPNWYFDVWGQGTLVTVS5 (2744.267 : 2745.973)
ſ	31	54.7	1200.73	4	4799.90	1.2	12-13	[149-190]	A GYIFSNYWIQWVRQAPGQGLEWMGEILPGSGSTEYTENFK (4797.272 : 4800.265)

• Protein Characterization Goals are for 100% Primary Sequence Coverage

Conclusi

- Alexion's Biotherapeutic Characterization group uses additional strategies
 - Branched Sample Prep / Composite Search MALDI-ToF
 - Sub-Ambient Trapping LC-MS
 - MasterTable for Data Reduction

Waters Contacts

cknowledam

Alexion Pharmaceuticals

Jeff Mazzeo Scott Berger Ken Eglinton Ying Qing Yu Dustin Yaworsky

Bruce Andrien Rekha Patel Christine Nowak Helena Prieto Examination of an a Biotherapeutic Characterization Strategy.

GEN Webinar Series 2009

Adam Lucka, Rekha Patel, Christine Nowak, and Bruce Andrien Alexion Pharmaceuticals Protein Characterization Group

Integration of Bioinformatics for Biotherapeutic Protein Characterization

Yan Wang, Ph.D Analytical Biochemistry Department Biogen Idec, Cambridge

©2009 Waters Corporation | COMPANY CONFIDENTIAL

Biotherapeutic proteins

- Bioinformatics tools for protein identification
- Bioinformatics tools for protein characterization
- **2.** Examples of protein characterization with bioinformatics
 - Intact mass analysis
 - Peptide mapping
 - Disulfide bond mapping
 - MS^E analysis
 - MS/MS analysis

3. Conclusion
Characterization for Biotherapeutic Proteins (of

known protein sequence)

Intact mass analysis

MS-based Protein

- Does the detected mass match the theoretical mass?
- Are there other species present besides the expected one?
- Peptide mapping
 - Do peptides conform to the predicted sequence? Any mutations involved?
 - What post-translational modifications are involved?
 - Are disulfide bonds in the proper arrangement?
- Tandem mass analysis

-Identify mutations and post-translational modification, sequence unknown peptides, determine sites of mutation and post-translational modifications

Extensive Bioinformatics Tools for Protein Identification (Proteomics)

Identification by Peptide Mass Fingerprint

MS-Fit: (UCSF) http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm

Profound: (Rockefeller University) http://129.85.19.192/profound_bin/WebProFound.exe?FORM=1

Mascot PMF: (Matrixscience) http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=PMF

Identification by Tandem MS/MS

SEQUEST: (ThermoElectron)

http://fields.scripps.edu/sequest/

MASCOT: (Matrixscience)

http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS

OMSSA:

NCBI--Open Mass Spectrometry Search Algorithm http://pubchem.ncbi.nlm.nih.gov/omssa/omssacgi.cgi?searchsettings=iontrap.xml **Bioinformatics Tools for Biotherapeutic Protein** Characterization

- Protein characterization works with relatively pure molecules having known sequences
- Analytical data processing is the bottleneck of protein characterization
- Bioinformatics tools are less developed

Data Processing Softwares:

- 1. Software by Agilent
- o Mass Hunter matches protein sequences and finds post-translational modifications; Useful for biotherapeutic protein characterization
- o Mass Profiler is good for comparing the statistical significance of certain m/z values and for quantitative analysis.

2. Software by Waters

- o Useful for biotherapeutic protein characterization
- o Can process MSe data to confirm peptide sequences
- o Can show the peak intensity difference, but no statistical visualization
- o user friendly

Bioinformatics Can Greatly Increase Data Analysis Productivity

No Bioinformatics

Manually match m/z values of every spectrum across the chromatogram with the theoretical peptides

> Identify the matched m/z in each spectrum, assign the annotation

Perform ms/ms analysis for unknown m/z values

Manually input all the identified peptide sequences, m/z values, charge states, post-translational modifications....

Months of work

With Bioinformatics

Automate batch data processing, annotate and compare the results among reference standard and experimental samples

Process MSe data to validate peptide mapping assignment

Produces annotated spectra, chromatograms, coverage maps and tabular data

Export peptide/fragment data for searching with other biginformatics tools

Intact Mass Analysis

Example 1: Single sample analysis showed protein and its conjugates Waters

	Modifiers	T Calculated Protein Mass (Da)	Control RT (Min)	Control Mass (Da)	Control Intensity (Counts)
1	DM4(9)	154612.9531	17.0	154622.2344	344.9
2	DM4(7)	152852.9531	17.0	152846.0938	1325.3
3	DM4(6)	151972.9531	17.0	151972.5156	6286.0
4	DM4(5)	151092.9531	17.0	151099.6719	11700.1
5	DM4(4)	150212.9531	17.0	150216.4531	26240.6
6	DM4(3)	149332.9531	17.0	149336.8594	34385.1
7	DM4(2)	148452.9531	17.0	148456.1406	34047.6
8	DM4(1)	147572.9531	17.0	147576.8906	20736.7
9		146692.9531	17.0	146693.7969	3725.2

Example 2 : Batch samples can be processed and compared for high-throughout

Control

Peptide Mapping Data Processing

Processed Chromatogram Showed fferences between e

Control Min Intensity Threshold : 0 counts

Difference can be Observed in Spectrum:

Control vs Analyte

Chroma	Chromatogram Spectrum Coverage Map Protein Digests Peak Match Data														
	Fragment Number	Start	End	Calculated	Control RT	Control m/z	Co	Control Mass (Da)	Control Inten	▲¹ An	Analyte m/z	A	Analyte Mass	Analyte Intensi	Delta
1	2:K6	109	112	487.3006	31.1	488.3078	1	487.2999	107309.0	31.4	488.3298	1	487.3219	119451.3	10.2
2	1:K28/y4	419	422	461.2486	34.9	462.2583	1	461.2504	33426.0	35.1	462.2788	1	461.2709	25914.7	29.0
3	1:K28	418	422	574.3326	34.9	575.3392	1	574.3313	110118.0	35.1	575.3642	1	574.3563	124050.1	11.2
4	2:K15*/y6*	214	219	829.3541	38.3	415.6849	2	829.3540	13896.0	38.3	415.7037	2	829.3915	10847.4	28.1
5	2:K15*	213	219	916.3862	38.3	459.1997	2	916.3836	256552.0	38.3	459.2220	2	916.4281	215683.9	18.9
6					38.4	939.3770	1	938.3691	10097.0	38.4	939.4203	1	938.4124	13350.0	24.4
7	2:K9	151	154	559.3118	42.3	560.3181	1	559.3102	75155.0	42.4	560.3428	1	559.3349	55926.1	34.4
8										48.5	787.4412	2	1572.8665	20703.4	
9	2:K10x2	155	174	4269.9229	49.0	1424.3254	3	4269.9526	28803.0	49.0	1424.3901	3	4270.1465	17204.4	67.4
10	2:K10	155	174	2134.9614	49.1	1068.4880	2	2134.9602	436132.0	49.1	1068.5386	2	2135.0613	247822.4	76.0
11	2:K8*	132	150	2157.0566	49.1	1079.4825	2	2156.9492	17648.0	49.1	1079.5333	2	2157.0508	13305.8	32.6
12	2:K10/y6	169	174	706.3134						49.1	707.3522	1	706.3443	12904.6	
13	2:K10 155-174 mutant									49.6	1055.0325	2	2108.0491	89437.6	
14					53.9	404.7409	2	807.4659	13147.0	54.1	808.5115	1	807.5036	36418.8	63.9
15	1:K21/y6	337	342	653.3748	54.4	654.3783	1	653.3704	95390.0	54.4	654.4099	1	653.4020	90391.6	5.5
16	1:K21	335	342	837.4960	54.4	838.4990	1	837.4911	134017.0	54.4	838.5372	1	837.5293	249582.3	46.3
17					54.4	860.4831	1	859.4752	14944.0	54.5	860.5236	1	859.5157	33845.1	55.8
18					56.1	432.2263	1	431.2184	24704.0	56.1	432.2457	1	431.2378	27374.4	9.8
19	2:K6	109	112	487.3006						56.4	488.2944	1	487.2865	12240.4	
20	1:K30	448	454	659.3490	56.3	660.3523	1	659.3444	225395.0	56.4	660.3835	1	659.3756	202608.2	11.2
21					56.4	682.3373	1	681.3294	13375.0	56.4	682.3674	1	681.3595	49072.6	72.7

Disulfide Mapping: Comparison of the chromatograms of non-reduced and reduced samples Waters

Disulfide-linked Peptides in the Map of Non-

Fragment Number	Modifiers	Calculated Peptide Mass (Da)	Control RT (Min)	Control m/z	Contro Charg State	ol ^e Control ^e Mass (Da)	Control Intensity (Counts)
3:T001-3:T009		4667.198	59.7	1167.7939	4	4667.144	565863
3:T001-3:T009*	Oxidation M	(14)683.193	58.5	1171.7952	4	4683.1489	196462
1:T002-1:T009		2504.11	51	835.7098	3	2504.1055	186185
3:T014-3:T021		3555.749	63.6	1186.2482	3	3555.7207	759713
3:T014-015-3:T021		3883.924	57.1	1295.5906	3	3883.748	1912
1:T019-3:T022-023		1260.486	27.1	631.2525	2	1260.4891	17914
1:T020-021-2:T020	-021	5454.783	74.1	1364.6843	4	5454.7056	271024
1:T020-2:T020-021		5229.636	75.2	1308.3971	4	5229.5566	44785
1:T023-1:T030		2328.098	46.7	777.0377	3	2328.0894	386328
<mark>1:T023-024-1:T030</mark>		3986.882	16	1994.2504	2	3986.4849	12200
<mark>1:T023-1:T029-030</mark>		2748.299	15.1	1375.1942	2	2748.3726	<mark>8846</mark>
1:T038-1:T043		3844.824	57.1	1282.6047	3	3844.7903	207856
1:T038-1:T042-043		4087.957	56.5	1363.6487	3	4087.9221	12174
1:T046-1:T052		3378.478	63.7	1127.1567	3	3378.4463	98158
1:T046-1:T052*	Oxidation M(1)394.473	59.7	1132.491	3	3394.449	458
1:T054-1:T061		3848.751	60	1283.9138	3	3848.7178	55271

Caution: False positives can be found in the assignment!

MSe Data Processing to Validate Peptide Mapping Assignment

-														
	Chroma	togram Spectru	m Coverag	e Map P	rotein Digests	Peak Match Da	ita							
	1) 🗔 📝 🖷	🔛 🔝 🗌	M 丫	×									
		Fragment N	Start	End	Calculated	b/y Possible	Control RT	Control m/z	Contro	Control Mass (Da)	▼ ¹ Control Intensity (Cou	Control b/y Found	Control b/y List	
	1	1:T21*	264	282	2186.0566	36	52.3	729.6910	3	2186.0493	200234.0	32	b1;b2;b3;b4;b	~
	2	2:T1*	1	24	2588.2979	46	61.1	863.7697	3	2588.2854	193068.0	30	b2;b3;b4;b5;b	-
	3	2:T8*	83	101	2291.0317	36	50.5	764.6829	3	2291.0249	179082.0	25	b2;b3;b4;b5;b	
	4	2:T20*	196	212	1922.9561	32	43.2	641.9876	3	1922.9390	155242.0	25	b2;b3;b4*;b5*	
	5	1:T57*	674	702	3264.4558	56	64.1	1089.1562	3	3264.4448	153052.0	24	b2;b4;b5;b6;b	
	6	2:T3	34	55	2646.3958	42	65.7	883.1336	3	2646.3770	143280.0	30	b2;b3;b4;b6;b	
	7	1:T40*	425	447	2848.2961	44	54.8	950.4377	3	2848.2893	134692.0	20	b1;b2;b3;b4;b	
	8	1:T19*	231	256	2939.5232	50	66.6	980.8458	3	2939.5137	131449.0	15	b2;b3;b4*;b11	
	9	2:T13*	132	147	1844.9243	30	72.1	923.4666	2	1844.9174	127530.0	14	b3;b4;b6;b7;y	
	10	1:T37	401	417	1872.9146	32	67.9	937.4579	2	1872.8999	126164.0	25	b2;b3;b5;b6;b	
	11	1:T43*	491	509	2253.0137	36	69.7	752.0097	3	2253.0054	118330.0	25	b2;b3*;b4*;b5	
	12	1:T22	283	296	1676.7947	26	58.9	839.4000	2	1676.7842	111280.0	21	b1;b2;b3;b4;b	
	13	1:T8	77	87	1337.6761	20	59.0	669.8408	2	1337.6656	108629.0	17	b1;b2;b3;b4;b	
	14	2:T6	67	79	1302.6091	24	49.5	652.3057	2	1302.5956	105424.0	20	b2;b3;b4;b5;b	
	15	1:T14*	156	218	6760.3438	124	76.8	1353.0831	5	6760.3760	101862.0	31	b2;b3;b4;b5;b	
	16	1:T13*	142	155	1368.7072	26	48.8	685.3565	2	1368.6971	99122.0	22	b2;b3;b4;b6;b	
	17	1:T36	379	400	2543.1240	42	64.0	1272.5663	2	2543.1167	96954.0	24	b2;b3;b5;b7;b	
	18	1:T42	456	490	2913.3811	68	56.1	972.1331	3	2913.3755	96884.0	40	b2;b3;b4;b5;b	~
1	40	4.74		40	1000.0055			0.44 400.4		4000.0000	00500.0			_

Sequence: TTPPVLDSDGSFFLYSK Fragment Number: 1:T37 Modifiers:

Peptide from IgG1 Fc region

Control: TTPPVLDSDGSFFLYSK

encing Uutp

Ba	<mark>≜</mark> l∱
	2+1

Assignment	Fragment Mass (Da)	Control Peak Mass (Da)	Control Mass Error (Da)	Control RT (mins)	▼ ¹ Control Intensity (cou	Cor	
y15	1671.8270	1671.8047	0.0223	67.9	14144.0		^
y17	1873.9224	1873.8973	0.0250	67.9	7644.0		
y2	234.1454	234.1382	0.0072	67.9	992.0		-
у3	397.2087	397.2020	0.0067	67.9	860.0		
y14	1574.7742	1574.7729	0.0012	67.9	697.0		
y11	1265.5690	1265.5427	0.0262	67.9	510.0		
y8	948.4831	948.4587	0.0244	67.9	448.0		
y1	147.1133	147.1081	0.0052	67.9	418.0		
u.A.	E10 2020	E10 2004	0.0044	67.0	204.0		-
<						>	

Export MS or MS^E Data for Use with Other Bioinformatics Tool

de novo sequencing for exported MS^E data using another bioinformatics tool

File Tools Window Help														
	< 🍐		* 🔍 🍕					*	۱					
Project View	y_101509b.97	73.dta 🗙												
A Sample 1 	SM/SM	▶ R 	▶ 937.4037 	egion										
			#	Immonium	b	b-H2O	а	Seq	У	y-H2O	y (2+)	#		
			1	1	203.10	185.09	175.10	[202.08]				15		
			2	70.07	300.14	282.14	272.14	P	1671.82	1653.81	836.41	14		
			3	70.07	397.20	379.18	369.20	P	1574.76	1556.76	787.88	13		
			4	72.08	496.26	478.25	468.26	V	1477.72	1459.71	739.36	12		
			5	86.10	609.34	591.33	581.35	L	1378.65	1360.64	689.82	11		
			6	88.04	724.35	706.36	696.38	D	1265.53	1247.55	633.28	10	_	
			7	60.04	811.40	793.39	783.41	S	1150.55	1132.53	575.77	9	_	
			8	88.04	926.43	908.42	898.43	D	1063.50	1045.49	532.25	8		
			25	PP-28 F	500	۲ انتقاب العند الم			0, ,	۲		20).9,103 ⊤m/z)00	
<			a a di	1:1 2X 2	Y	R_RRS_	degly_101509ł	b.973.dta: ms=	=2 mz=937.40	037 z=2		_		
Tasks Running Info			Info Align	nent Error Ma	p					L				
Selection Details: R_RRS_de			Error (da	Error (da) 6d										
		<u>< ></u>			300		1000		1300	, 	200			

Another Example: MS/MS for *de novo* sequenci using bioinformatics tool

nentide

Conclusions

- Integration of bioinformatics can dramatically increase the efficiency of biotherapeutic protein characterization
- Caution still needs to be taken when using the bioinformatics tools. Expertise is required for indepth data analysis.

Acknowledgements

- Dr. Dingyi Wen
- Dr. Sheng Gu
- Susan Foley
- Monika Vecchi
- Craig Wildes
- Yaping Sun
- Dr. Alex Buko

Overcoming LC/MS Data Overload in Biotherapeutic Peptide Mapping Q&A

Thank you for attending Overcoming LC/MS Data Overload in Biotherapeutic Peptide Mapping

Sponsored by

Waters