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ABSTRACT

STRUCTURAL CHARACTERIZATION AND PHOTOPHYSICAL INVESTIGATION OF

TIRIDIUM-CARBON SIGMA BONDED COMPLEXES

by

Fred Omega Garces

The purpose of the work in Part I was to explore the
enhancement of the already-high photoreducing potential of ortho-
metalated complexes such as [Ir(ppy),Cl], and [Ir(ppy)szy]+ by
introducing functional groups onto the ppy ligand. The ligands 3-
methyl-2-phenylpyridine (mppy) and 2(p-tolyl)pyridine (ptpy), which
contain methyl groups donating electron density to either the phenyl
ring (ptpy) or the pyridyl ring (mppy) were used for this purpose.
In the course of this investigation, structural characterizations by
NMR techniques and crystallographic amnalysis indicated that these
complexes possess mutually cis Ir-C bonds; the dimers are D,
symmetric and the monomers are Cy symmetric. 1H and 136 resonances
were completely assigned in the NMR spectra.

Electrochemical and photophysical investigations suggest that
the electron density about the iridium metal of these complexes are

enhanced by the modification of ppy ligands. Our results show that

ix



these methyl-substituted ortho-metalated iridium complexes are much
stronger photoreducing agents than their non-substituted
counterparts.

Preparation and characterization of four mnovel iridium
bipyridyl complexes are discussed in Part 2 of this dissertation.
Iridium (IV) seems to be a key ingredient imn the preparation of
these complexes. Structural characterizations suggest that the first
of these bpy complexes is an ortho-metalated dichloro-bridged bpy
dimer, [Ir(bpy—c3,ll')(bpy-H,H')Cl]22+, I, Characterizations of I
include, 111 and 130 NMR spectroscopic; mass spectroscopic; electro-
chemical; photophysical (including acid / base measurements)
techniques.

The second complex exists as a [Ir(pry—c3,N')(bpy—H,H')012]+
cation and an [IrCl,(bpy)]  anion in an ion pair arrangement as
shown by crystallographic techniques, II. NMR and mass spectroscopy
provide good evidence for ortho-metalated bpy ligands in the
cationic moiety.

Our spectroscopic and elemental analysis evidence for the third
complex suggest an Ir(IV), cis- [I:r::“r(bpy-—ll,ll')zt'.:lz]"'2 species,
III. And finally the fourth complex isolated has been identified
as the trans-[Ir(bpy),Cl,]*, IV.

The last chapter describes other ortho-metalated iridium (III)
complexes similar to those described im Part I. NMR spectroscopic
and photophysical results are presented.
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FORWARD

This dissertation covers two major area of research. The first
is ortho-metalated iridium 2-phenylpyridine complexes in which the
PPy ligand has been structurally modified by a methyl group either
in the phenyl ring (ptpy) or pyridyl ring (mppy). Structural and
photophysical characterization of these complexes is described in
Part I, Chapters 2, 3 and 4.

The second major area of research is one I have been involved
with for just this past year. It involves iridium bipyridyl
complexes. Using Ir(iV) in the synthetic procedure results in four
novel complexes. Our results show that two of these are ortho-
metalated bpy complexes. The emphasis in Part 2, Chapters 5 and 6,
is the structural characterization of these four bpy complexes.

A general overview of photochemistry is described in Chapter 1.
This chapter is intended to give a simplified view of how the
measurements in the thesis relates to photoconversion systen.

Chapter 7 presents some ortho-metalated iridium complexes which
I prepared or characterized during my tenure here."

The appendix is a package of experimental procedures. NMR is
discussed in great length because of its significant in my research.
Also in the appendix‘is an extension of the acknowledgement page
found in page iii.

The following are structural representations of all the iridium

complexes discussed in this dissertation.
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CHAPTER 1

ORTHO-METALATED COMPLEXES AND STORAGE OF SOLAR ENERGY:
A GENERAL OVERVIEW.

The whole of science is nothing more
than a refinement of everyday thinking.

- Albert Einstein

OQur group started research in ortho-metalated complexes when

3+ 1,2 qpe

Professor Watts first discovered an isomer of Ir(bpy)j;
structure of this isomer, [Ir(bpy-Cs,N)(bpy-N,N’)2]2+, was the
center of numerous debates, which were finally settled by crystallo-
graphic analysis.3’4 "The crystal structure showed that the product
in question possesses two normal chelating bpy ligands while the
third was bound to the iridium center via metalation; through the N’
atom from one pyridyl ring and the c3 atom of the other pyridyl
ring, Figure 1.1. Later Watts et al. showed that the structure of

> MR

this isomer in solution is similar to that in the solid state.
analysis included two dimensional shift correlation spectroscopy

(COSY) to assist in the assignment of all the proton resonances

in the 1H NMR spectrum and to provide insight on the electronic



FIGURE 1.1

Structure of [Ir(bpy-Cs.N)(bPY-N,N')2]2+- 8

properties of the complex. It was this pioneering work with
[Ir(bpy-c3,N')(bpy-N,N‘)2]+2 which led our research group to the
study of ortho-metalated complexes and to rely on NMR techniques for
the elucidation of molecular structures.

The topics of research presented in this dissertation involve
the structural charaéterization and photophysical investigation of
iridium-carbon o-bonded complexes which are capable of
photosensitizing chemical reactions for solar storage wvia fuel
generation. The experimental arsenal covers (1) synthetic schemes
to prepare targeted complexes, (2) NMR techniques and X-ray
crystallography to elucidate structures, (3) cyclic voltammetry to
determine potentials of the ground state, (4) absorption, emission
and excited state absorption measurements to characterize the

excited state, (5) laser spectroscopy, Stern-Volmer quenching and
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quantum yield measurements to monitor 1lifetimes and understand
electron and energy transfer processes. Furthermore, investigation
on the dependence of temperature, solvent, excitation and pH were
used to elucidate electronic transitions in some of these
complexes. Ultimately, results from these experiments will enable
us to determine the viability of these complexes as photoreagents.

The development of solar-driven artificial processes
(photoconversion systems) that convert abundant resources into
chemical fuels, e.g., 2Hy0 + hv —> 2H, + 0, is important if only
to sustain current "energy requirements for the near future.
Photoconversion mechanisms in photobiology, photoelectrochemistry,
photovoltaics and photochemistry provide systems capable of

6

harnessing the sun’s energy cleanly and efficiently. More

recently, Jean-Marie Lehn suggests the development of supramolecular

devices for this pu.rpose.7

The main component fundamental to the
photoconversion system is the photosensitizer. Characterization of
complexes capable of photosensitizing chemical reactions is the
focus of research in Professor Watts' laboratory.

Kutal® describes the main components of a photoconversion
system, Figure 1.2, in which solar irradiation drives a
photochemical reactionm in a thermodynamically unfavorable direction,
AG > 0, to form products (chemical fuel). Photosensitizers are used
to absorb the incident 1light because in most instances the

reactant(s) do not absorb solar irradiation. Reversal of the cycle

by application of heat or catalyst, liberates the stored energy.
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FIGURE 1.2

Fundamental components of an abiotic photoconversion system.8

This system will most likely require electron relays and redox
catalysts in addition to the ones already mentioned. Nevertheless,
as mentioned, the gist of a photoconversion system is the
photosensitizer and its ability to absorb electromagnetic radiation,
preferably at wavelengths utilizing the solar spectral range and
then, through its excited state, activate inert substrates such as
HyO and CO,y in order to transform optical energy to chemical
potential energy stored in bonds. The photo-generation of excited
state precursors (substrate bound to the metal catalyst) having
sufficient redox potentials leads to substrate reduction or
oxidation via multi-electron transfer processes which are necessary

for product formation.
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Kutal,8 Bolton9 and Balzani10 discuss several criteria
fundamental for a viable photoconversion energy storage cycle.
These criteria are: (1) The reactions in the photochemical cycles
should be capable of operating over a wide band width of the visible
and ultraviolet portion of the solar spectrum with a threshold
wavelength well into the red or near infrared. In other words, the
photosensitizer should absorb visible light. (2) The photochemical
reaction must be endergonic, AG > 0. That is, upon absorption of
electromagnetic radiation the system must proceed 1in the
thermodynamically unfavorable direction. (3) The endergonic
photoreactions must be cyclic with only raw materials and solar
irradiation being consumed. That is, the photosensitizer must be
regenerated after each cycle. (4) The quantum yield should be near
unity. The efficiency of converting absorbed photons to chemical
energy must be high. (5) For long term storage of the products,
the back reaction must be extremely slow under ambient conditions.
Furthermore, upon heating or addition of catalyst, the back reaction
should proceed controllably, rapidly and specifically. (6) To
ensure maximum efficiency, side reactions leading toward the
depletion of photosensitizers, reactants, products and/or catalysts
must be at a minimum. (7) Finally, reagents and other necessary
components of the photoconversion system should be available,
manageable, inexpensive and nontoxic.

There are inherent limitations in photoconversion processes

aside these stringent requirements which 1limit the overall
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Energy diagram for photoconversion storage cycle.8
efficiency of converting solar energy to chemical fuel.8,11 Figure

1.3 illustrates an energy diagram for a photoconversion process.
The diagram shows that only photons with energies corresponding to
E¥ will be absorbed by the reactant R, without significant waste.
Photons having energies less than the threshold value E*, will not
be absorbed. Furthermore, absorption of photons having energies
greater than E results in the population of vibrationally excited
levels of R*; internal conversion results in the lowest vibrational
level of R* to be populated and any energy in excess of E¥ is lost
to the surroundings. In addition to absorption losses, the
conversion of raw materials to useful fuels will require free energy
from the system to prevent the back reaction. As such, the
available energy corresponds to AG and not E*; the system will in

-

effect lose energy due to storage.
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Ross and Hsiao et al.lz, calculated the maximum thermodynamic
efficiency for an abiotic solar conversion system to be 32% at 840
nm, taking into consideration the fraction of solar power available
at the bandgap energy. If losses due to an activation barrier (AG*)
are figured into the calculation, the gross efficiency drops to 9.2
+ 0.8%. This, however, is still comparable to the 5.6 + 1.2%

efficiency for photosynthesis.13

TABLE 1.1

Endergonic fuel-generation reactions

AG n E
Reaction (KJ/mol) (mol) )
HyO(1) + hv > Hy(g) + 1/2 04(g): 237 2 123
CO0y(g) + 2H,0(1) + v —> 703 6 T2
CH30H(1) +3/2 0,(g):
COy(g) + 2Hy0(1) + hvy ——> 818 8 1.06
CH&(g) + 202(g):
N, (g) + 3Ho0(1) + hv > 678 6 1.17

2NH4(g) + 3/2 0,(g):

Raw materials for photoconversion processes are readily
available from our environment. Economical, ecological and
energetic considerations indicate that water, carbon dioxide and

dinitrogen are the most attractive raw materials for photoconversion
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processes. Table 1.1 shows some of the thermodynamic parameters of
some endergonic fuel generation reactions®.

All the reactions shown in Table 1.1 involve multi-electron
changes. Herein lies the problem; photoredox reactions of
transition metal complexes generally occur with the transfer of only
one electron per absorbed photon. How can a one-electron redox
process satisfy a multi-electron reaction in such a way as to avoid
formation of high energy radicals that retard the efficiency of the
photoconversion process? The answer lies in charge-storage catalyst
whose role is to medi;te multi-electron changes by accumulating the
proper number of electrons for delivery to the reactants and
furthermore stabilizing any intermediates that form.

Traditional photosensitizers charge-storage catalyst such as
Ru(bpy)32+ operate in aqueous media. However, recent emphasis has
been toward the development of complexes capable of operating in
both aqueous and nonaqueous media and possessing multiple
functionality as photosensitizer / relay / catalyst. Functions of
metal complexes may be classified as: (1) electron relays in order
act as intermediate electron storage devices, (2) redox catalysts to
enhance the rate of the redox processes, and (3) redox substrates to
regenerate the photosénsitizer or catalyst. The ability of a metal
complex to play multiple roles in photoconversion systems is
contingent on its excited state (as well as ground state)

properties.
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The excited states of metal complexes are wuseful in
photochemical conversion because they participate in rapid outer
sphere electron transfer, sustain long lifetimes, possess favorable
redox potentials and are accessible by absorption of wvisible light.

Ba].zanilo

points out that an excited state induced in a molecule by
absorption of light becomes virtually a new species with its own
chemical and physical properties distinct from those corresponding
to the ground state molecule. In the excited state, the molecule
has a higher electron affinity and a lower ionization potential.
This asset makes the excited state a better oxidant and a better
reductant than that of the ground state.

The Latimer diagram of Ru(bpy)32+, Figure 1.4, shows that the

excited state is both a moderately strong oxidant (-0.86 V vs. NHE)

and a very strong reductant (+0.84 V) compared to the ground state

(3CT) Ru (bpy)

- 0.86V + 0.84V
2 12 eV

+1.26V —1.28V
Ru (bpyv):3 .4:" Ru (bpy) 4__._.__’ Ru (bpv)

FIGURE 1.4

Latimer diagram for Ru(bpy) 32+ (vs. NHE).lO
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which has an oxidation and reduction potential of +1.26 and -1.28 V,
respectively. Moreover, the excited state redox potential of metal
complexes such as Ru(bpy)32+, may be altered ("tuned") by several
types of structural modifications. Modifications include: (1)
changing the central metal, (2) replacing some or all of the ligands
with other suitable ligands i.e., 2-phenylpyridine (ppy)., (3)
modifying the ligands by adding suitable functional groups, and (4)
using mixed bimetallic complexes to access, within a single chemical
moiety, redox properties associated with each monomeric complex.

Changing the metal in Ru(bpy)32+ to Ir(III) for example,
produces a complex, Ir(bpy)33+, with excellent photo-oxidizing power
(=2 V wvs. NHE).l4 On the other hand, replacing bpy in Ir(bpy)33+
with ppy produces a very strong photo-reductant, Ir(ppy)3.15
Species containing both bpy and ppy coordinated to a common metal
ion center such as in [Ir(ppy)szy]+, have intermediate photoredox
capabilities and can operate as either photo-oxidants or photo-

reductants.16

Thus, the optimization of photoredox properties of
metal complexes can be provided by the combination of ortho-
metalating ligands such as ppy and its derivatives with coordinating
ligands such as bpy.

The metal-carbon bond in ortho-metalated complexes can be
described as a 2-electron, 2-center covalent o-bond with bonding
density along the metal—carbon internuclear axis. The intriguing

properties manifested from the metal carbon o¢-bond make ortho-

metalated complexes viable for many photosensitizer applications.
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S + R ———» [PRECURSOR/SUCCESSOR]

S+ + R-
H,y0

Cat.l -
Cat.2
hv Back Reaction
. - Hy + 0o,
Deactivation .

(AG) -
Stored
Energy

FIGURE 1.5

Energy reaction coordinate diagram for substrate (S) and reactant
(R) undergoing electron transfer processes.

Favorable properties imparted through ortho-metalation include:l7'18
1) An enhancement of the excited state redox potential to drive
endergonic chemical reactions as a consequence of the increase of
the energy of metal-localized states because of the greater ligand
field strength of ppy over bpy. 2) The availability of low-lying
MLCT states from the enhancement of electron density about the metal
center from the strong o-donor ability of the metal-carbon bond. 3)

Cathodic shift in the oxidation potential of the metal center in
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ortho-metalated complexes giving rise to very strong photoreductants
but relatively weak photooxidants.

Gratzel19

discusses three examples of suitable light-harvesting
units which utilize metal complexes to capture photons and convert
their energy to storable chemical fuel. The first two units consist
of colloidal semiconductors and are more efficient than the third
unit. The third, and most fundamental unit, comprises the
sensitizer/relay pair. This wunit, however, has poor efficiency
because the area in which light induced charge separation and redox
catalysis occurs, is not confined in a concentrated area.

In its most basic form, the unit consist of a sensitizer (8)
and a relay (R), Figure 1.5. The illustration shows no spontaneous
electron transfer occurring between the two species, S and R in the
ground state. Upon excitation however, the sensitizer becomes
virtually a new molecule with respect to the corresponding ground
state thus exhibits different chemical properties. The sensitizer
can then diffuse to an electron relay forming the precursor S#¥es«R,
During this encounter, electron transfer may occur forming the
successor [Ste«eR7]; at this stage a majority of the photon energy
absorbed by S can be converted into chemical potential through the
product ions st and R™, see equation 1.1. These ions can then
convert raw materials into chemical fuel, as shown in Figure 1.5.

(1.1) S+R+hv > Sk+R = SkeeoR = [STeeeR™] » s 4+ R”
Precursor Successor Redox product
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The electron transfer within the precursor, [S+---R'] is
governed by the Franck-Condon principle in which the nuclear
positions and nuclear velocities remain essentially unchanged during

the electronic tr.smsit:i.on.20_22

The potential energy diagram,
Figure 1.6, shows that there is an energy state where the precursor
and successor have identical energies. At this point in the
precursor/successor encounter, electron transfer occurs without
violating the Franck-Condon principle. Upon electron transfer, the
inner vibration coordinates of the molecules and the outer solvation
sphere adjust to a nonequilibrium position. Consequently there is
an expenditure of free energy of reorganization ﬁG*A in the system.

*
AG”y may be related to the rate constant of the electron transfer

event by the equation 1.2.
*
(1.2) Ki = 7y Kgp EXP {-AG / RT}

In this equation, vy is the effective vibration frequency, Kg1 is the
electronic transmission coefficient, R is the universal gas constant
and T is the temperature in Kelvins.

Furthermore, AG*A, a kinetic parameter, can be related to the
free energy, AG®, é thermodynamic  parameter, for electronic

transfer, by the Marcus-Hush equation 1.3,
(1.3) AG¥, = AG*)(0) [1 + (AG®/4 AG™,(0))]?

Here, ﬂG*A(O) is the free energy of reorganization. The Marcus

equation implies that the free-energy of activation is expected to
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decrease (meaning the reaction rate increases) when the reaction is

thermodynamically favored. There is a point, however, in which the

rate decreases at even higher thermodynamic driving force; this is

20

called the Marcus inverted region.

Y

nuclear configuration

Figure 1.6

Classical model for electron-transfer process,G'l9

Electron transfer rates can be measured by Stern-Volmer

23,24 Compbunds which accept electrons are referred to as

quenching.
oxidative quenchers, and compounds which donate electrons are
referred to as reductive quenchers. Table 1.2 lists some quenchers

along with their redox potentials.25_28

By lifetime or emission
intensity measurements of the excited state complex as it undergoes

electron transfer with these quencher compounds, rates of electron
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transfer can be calculated. For lifetime quenching the rate
constant of electron transfer, kq, may be determined from equation

1.4. A plot of [1l/r0 - 1/rn] verses [Qn] leads to kgq.

(1.4) [ 1/r0o - 1/rn ] = kq [Qn]
where, 7o, is the lifetime of the complex with no quencher
™, is the lifetime of the complex for a given
concentration of quencher [Qn]
kq, is the rate constant of electron transfer

[Qn], is the quencher concentration

The excited state photoreducing and photo-oxidizing power (*Er°
and *Eox®) of the complex may be estimated by plotting kq against
the redox potential, E®, of the quencher. A quencher with small E°
values (quenchers which easily donate or accept electrons) will have
kq walues in the order of —109. A kq with this magnitude, is
usually referred to as diffusion controlled; diffusion of the
quencher to the excited state governs the rate of electron transfer.
As the E° potential increases the electron transfer begins to be
sluggish and the kq drops below diffusion control. In other words,
each encounters does not lead to electron transfer and a graph of E°
vs. log kq deviates from a straight line (with slope =zero) and
starts to break downward (as you will see in Figure 3.4.11). The E°
potential at which the graph breaks is estimated to be the excited

state redox potential.29

The curvature of this graph also provide
insights into the degree of structural distortion of the excited

state.
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TABLE 1.2

Redox Potentials of -Oxidative and Reductive Quenchers (vs. NHE)

Oxidative Quenchers -E° Reductive Quenchers E°.
pDNB 0.69 Pt 0.53
p-dinitrobenzene phenothiazine

mDNB 0.90 DMA 0.81
m-dinitrobenze N,N-dimethylaniline

NBA 1.02 DPA 0.83
m-nitrobenzaldehyde diphenylamine

CNB 1.06 AN 0.98
p-chloronitrobenzene aniline

NB 1.15 TMB 1.12
nitrobenzene 1,2,4 trimethoxybenzene
MNB 1.20 DMB 1.34
p-methylnitrobenzene 1,4 Dimethoxybenzene

PAN 1.34 mTMB 1.49
p-aminonitrobenzene 1,3,5-trimethoxybenzene

In the past five years our group has synthesized and identified
ortho-metalated complexes for use in photoconversion schemes. To
this end, Dr. Kevin A. King was responsible for pioneering the work

in ortho-metalated complexes.30

During his tenure in the group, he
prepared and characterized iridium dimers such as [Ir(NC),Cl], where
NC = 2-phenylpyridine (ppy), or 7,8-benzoquinoline (bzq). From
these dimers, he prepared complexes of the type [Ir(I\TC)nNIil:i_n]3"1'1

where NN is 2,2'-bipyridine, or 1,10-phenanthroline. He also



22
isolated the first Ir(III) ppy triply ortho-metalated complex, fac-

Ir(ppy)3. Ashley P. Wilde studied the excited state behavior of

some of these iridium complexes.31

32

Dr. Steven Sprouse synthesized

Rh analogues,

33

while Dr. Carl A. Craig prepared the Pd and Pt
analogues with other ligands such as 2,(2-thienyl)pyridine, 2-
phenylpyrimidine and ethylenediamine among those already mentioned.
Craig also developed the synthetic scheme to couple mixed metal,
mixed <valence ortho-metalating complexes of the type
[M(NC)Clz(NC)QM’] where M is Pt, or Pd, NC is ppy or bzg, and M' is
Rh(III). Dr. Peter Spellane prepared Re analogues, but his greatest
asset to the group was his pioneering work in NMR spectroscopy to
characterize the Ir, Ru, and Rh complexes of King and Sprouse.3a
The collaborative efforts by these individual have afforded

fundamental understanding on the utility of ortho-metalated

complexes as photosensitizer.
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APPENDIX F

I believe that we cannot live better
than in seeking to become still better
than we are.

-Socates

We've come to my favorite section of this dissertation. 1 just
completed the dedication page found at the beginning (p iii). I
feel that there are still many others I need to acknowledge. I know
this section may seem unorthodox, but it is my thesis and I feel
that this work would be incomplete without this 1last
acknowledgment. (Besides, I do owe someone a pigeon section).
These individuals are very much a part of this work because each has
touched my life and in that way have contributed to this work.

I read somewhere (Trina Paulus, "Hope for the Flowers", —
thanks for the book Pia) that someone once asked an artist how long
it took him to make a certain picture. "Five minutes and my whole
lifetime," he responded. This dissertation is like that. I want to
sincerely thank each who has given either to this work itself or to

the lifetime that made it possible.

To my family (again)—Nieves, Joe, Noel, Lelian, Grace and
Will. Thanks for always standing by my side, especially in

difficult moments.
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To three great senior members of the Watts' Institute —PJS,
KAK, and CAC (Ondine who once said to me "Fogger you’ve got to learn
how to control your "s#!t".") Thanks for being a great inspiration.

You guys are all greaf protege of S.C. KTFWF!!

To other members of the WIW—Ashley (So when fo' we goin' rubah
neck at Sam’s n’ throw back some brewskies?), Pete, Christine, Ken,
Greg, Hector and Mizuno (Mr. V-ball ringer-san). It was great

keeping TFWF with all of you. (P.S. Don’'t let Ali down.)

To the undergraduates I've had a pleasure working with. In the
GRMP program; Selmira Tellechea, Maryann Torres and Mae Libunao
(Stern Volmer quenching study, Chapter 3) SARI program Joe Escobar
(FTG, Top Green, Chapter 7)and Debbie Rashe (Acid\base luminescence,
Chapter 5). To the graduate division who provided funding for these
undergraduates to work with me,. Thanks Christine Iriart, and

Dorothy Nagaran.

To my relatives in Fairfield, CA who believed in me and my
abilities enough to sponsor me in my senior year in high school.
Thanks uncle Bert, auntie Lydia, cousins Steve (Nilda), Darryl, Eric
and Clifford Valmores. I also like to thank the Topacios—

especially Hilda (Mark).



335
To the individuals in Guam and S.B. who always knew some how
this day was coming— Mr Piel, Mrs. Lawrence, Isidro Yatar, Greg

(Julie and family) and Mike Cruz and Stanley Aki,

To my buddies Dan and Dave. We've come a long ways from our

hoodlum days back in Agat.

To Pia, hey look it finally happened! You know though Pia, it

doesn’t feel any different.

To Gloria George, my landlord at Santa Barbara while attending
UCSB. Thank you for being so generously hospitable with your home

for these past four years.

To members of my dissertation committee——Professor Ford,

Professor Offen and Professor Stucky. Thanks for your time and
effort in serving in this committee. I am most grateful and
honored.

To Dr. Ata Shirazi, Dr. J.T. Gerig and Dr. H. Eckert, thanks

for assistance and helpful discussion on the NMR work.

To my beach and intramural volleyball partners—you know who

you are. Thanks for the great games!!

To Dr. Mike Eddy (aka dad-Mr) folks, he is possibly the
greatest sport legend (not a bad crystallographer either) in his own

mind.
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To Dr. Bill Harrison, Dr. Hermann Mayer and D. Gregory—

Crystals, NMRs and computers- deadly combo da one.

To Sue Yamagata, thanks for the late night company. We’ve got

to do mud pies again one of these days.

To the Department of Energy, Campus fellowship, President
Dissertation Year Fellowship and the Chemistry Department for

providing financial support,

To da Foxxy Babes of Santa Barbara:

Dawn (aka mom-ladyﬂ its a long story folks), in your own way
you’ve always been special. Thanks for watching out fo' your

trouble-maker son, ‘'specially when he no can keep his "s#!+".

Margi (Jim), thanks for making the third floor a pleasant place to
work. Your Big smile always somehow bring out the sunshine—even

in foggy days. Thanks also fo’— you know what fo’.

Dukie (Delphine), thanks for late-nite company on the NMR
spectrometer. The androstan collaboration taught me a lot, we got a
lot of mileage from it. Hang in there and don't let me down.

X's & 0's.
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Ty (Sui), a very special ski bunny (sorry Sui). Thanks for being
my first friend at UCSB, for that you’ll always be special. Most
of all, thanks for the great memories at UCSB. Finally, thanks for
at least trying to make me keep in control em $#!+, even though I

lose em.

Killer (Kathy), thanks for making me lose control of my "S$#!+".
(Just kidding). Thanks for the fun and the good times, I will miss

you dearly.
And to others I fear I forgot, sorry ‘ey?

A special thank you to Dr. Nancy Keder (Bill). Thanks for
countless proof reading of the crystal section, for being a great
crystallography teacher, for being a true friend. At least for now
you won’'t have any more miserable iridium structure to solve.
(Notice I said "for ﬁow".) Chapter 4 is dedicate to you in your

honor. You're awesomel!l!!

Finally a special acknowledgment goes to Dr. Big Kahuna, Da
boss 4-U and 4-me, Professor R.J. Watts. I will always be indebt
to you. I don’'t think I can put into words the gratitude I owe you.
(Knowing me it’ll probably come out in pigeon any wayz.) It was a
great pleasure working for you and in your lab. You’ve taught me
much, but most of all, you’ve taught me how to lose my s#!+ !!. The

memories will linger (kinda scary hu?).
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A SCIENTIST CREED

Relying upon a faith that our
universe is not a chaos
but an ordered cosmos.

I believe that through sincere
and courageous efforts
man can learn what is true

I believe that inherent is what
_ is true is that which
will serve creation in its
highest form, which is Humanity.

I believe that truth shall
make man free—free from the
ills of the flesh and the spirit.

I rely upon an unfolding
knowledge of the truth to
provide a solution for the

problems and conflicts that
vex humanity.

I therefore dedicate
myself to the task
of seeking the truth
fearlessly and zealously,
and to the application
of what knowledge I
may gain for the
establishment of a
peaceful, just and
orderly civilization on
earth.

——Arthur H. Compton
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