General Chemistry 200

Practice Exam 2 Stoichiometry Calculations and Aqueous Systems

Chapter 3 Stoichiometry Calc. & formulas

1 Chemical Equation Type of Reactions

- 2 Atomic and Molc' Wt AW, MW, FW % Composition
- 3 The mole
- 4 Empirical Formula determination Mol. Formula determination From Combustion Analysis
- 5 Stoichiometry problems: Molecules to moles Mass to moles Volume to moles Using the balance equation, moles_a to moles_b
- 6 Quantitative Information Calculating Limiting reagents Determining the amount of excess % yield calculations

- 1 Solution Composition Concentrations and Molarity Dilution Calculation
- 2 Properties of Solution Aqueous solution (Water) Ions in Water Molecules in Water Electrolytes: Weak electrolytes: nonelectrolytes
- 3 Acid / Base
- 4 Ionic Equations
- 5 Metathesis Reaction Ppt reaction and solubility table
- 6 Oxidation Reduction Electron transfer through single displacement Activity Series
- 7 Titration calculations and concepts The experimental setup Acid-Base Stoichiometry

	1																	18 VIIIA
1	1 H 1.00794	2 IIA				Per	iodi	c Ta	able				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4,0026
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
	6.941	9.01218											10.811	12.011	14.0067	15.9994	- 18.9984	20.179
3	11 Na	12 Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	22.9898	24.305											26.9815	28.086	30.9738	32.066	35.453	39.948
4	19 K	20	21 So	22 Ti	23 V	24 Cr	25 Mn	26 F o	27 Co	28	29 Cu	30 Z n	31 Ca	32 Co	33	34 So	35 Br	36 K r
	IN 39.098	Ca 40.078	44.956	47.88	v 50.9415	51.9961	54.9380	55.847	58.9332	58.6934	63.546	65.39	69.723	72.61	74.9216	78.96	D1 79.904	IXI 83.80
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	85.4678	87.62	88.906	91.224	92.9064	95.94	98.9063	101.07	102.906	106.42	107.868	112.411	114.82	118.710	121.757	127.60	126.905	131.29
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	132.905	137.32	138.906	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.19	208.980	208.982	209.987	222.017
7	87 E	88 D-	89	104 V	105	106	107	108	109	110	111	112			-			
	Fr 223.02	ка 226.02	AC 227.028	Ku [261]	[262]	[263]	[262]	[265]	[268]	[269]	[272	[277]						

Chapter 4 Aqueous Stoichiometry

Conversion information:

System	LENGTH:	VOLUME	MASS	Temperature			
English:	1 ft = 12 in 1 mile = 5280 ft	1 gal = 4 qt 1 qt = 2 pints 1 pt = 16 fl oz	1 lb = 16 oz 1 ton = 2000 lb	$T_{*_{\rm F}} = 1.8T_{*_{\rm C}} + 32$			
SI- English:	2.54 cm = 1 in 1.609 km = 1 mi	0.946 L = 1 qt 3.785 L= 1 gal 29.57 mL = 1 fl oz.	453.6 g = 1 lb 28.35 g = 1 oz 1 kg = 2.205 lb	$T_{\circ_{\rm C}} = \frac{(T_{\circ_{\rm F}} - 32)}{1.8}$			
Misc. info	1 mole	$e = 6.02 \cdot 10^{23}$	Density H	Density H_2O : 1.0 g / cc			

General Solubility Table:

Soluble substances containing -	Exceptions	Insoluble substances containing -	Exceptions
nitrates, (NO ₃ ⁻) chlorate (ClO ₃ -) perchlorate (ClO ₄ ⁻) Acetate (CH ₃ COO ⁻)	None	carbonate (CO_3^{2-}) Phosphate (PO_4^{3-}) chromate (CrO_4^{2-}) Sulfides (S^{2-})	slightly soluble
Halogens (X ⁻) $X^- = Cl^-, Br^-, I^-$ Sulfates (SO ₄ ²⁻)	Ag, Hg, Pb Ca, Ba, Hg, Pb	Hydroxides (OH ⁻)	Ca*, Sr, Ba, Alkali, NH ₄ ⁺ * marginally soluble
Alkali & NH ₄ ⁺	None		

Soluble - dissolve, no precipitate (aq -phase)

insoluble (or slightly soluble) - does not dissolve, precipitate forms. (s-phase)

- 1 Combustion of a sulfide of bismuth compound, $Bi_x S_y$ (50.00g) in O₂ produced 45.30 g of dibismuth trioxide (Bi₂O₃). i) What is the IUPAC compound name, empirical formula and the formula weight of the bismuth sulfide (Bi_xS_y) compound?
 - ii) What is the oxidation state of the sulfur and the bismuth in this compound?
 - iii) Suppose in your combustion experiment, the $Bi_x S_y$ compound also contained some bismuth oxide impurities, how would this affect the x-value in the empirical formula of $Bi_x S_y$ (higher or lower and state your reason)?
 - iv) Suppose instead of producing 45.30 g dibismuth trioxide in the final product of the combustion, 45.30 g of dibismuth pentaoxide is produced instead, how would this affect the y-value in the empirical formula of Bi_XS_y ?

Balance the following equations.

2

i)
$$\underline{KOH}_{(aq)} + \underline{H_2SO}_{4(aq)} \rightarrow \underline{K_2SO}_{4(aq)} + \underline{H_2O}_{(aq)}$$

ii)
$$__C_4H_{14(l)} + __O_{2(g)} \rightarrow __CO_{2(g)} + __H_2O_{(l)}$$

iii)
$$N_2H_4(l) + __O_2(g) \rightarrow __NO_2(g) + __H_2O(g)$$

iv)
$$\underline{K_2CO_3}_{(aq)} + \underline{H_3PO_4}_{(aq)} \rightarrow \underline{K_3PO_4}_{(aq)} + \underline{CO_2}_{(g)} + \underline{H_2O_{(l)}}$$

v) Arsenic(III) oxide + Hydrochloric acid \rightarrow Arsenic(III) chloride + Dihydrogen monoxide

vi) Phosphorus + Bromine \rightarrow Phosphorus tribromide

- vii) Calcium carbonate decomposes to calcium oxide and carbon dioxide
- viii) Copper(II) sulfate pentahydrate is dehydrated to _____+

Identify the type of reaction above.

- A compound of Ca, C, N, and S was subjected to quantitative analysis and formula mass determination, and the following data were obtained. A 0.250 g sample was mixed with Na₂CO₃ to convert all of the Ca to 0.160 g of CaCO₃. A 0.0268 g sample of the compound was carried through a series of reactions until all of the S was changed to 0.0802 g of BaSO₄. A 0.712g sample was processed to liberate all of its N as NH₃, and 0.155 g NH₃ was obtained. The formula mass was found to be 156 g/mol. Determine the empirical and molecular formulas of this compound.
- 4 2,4,6-Trinitrotoluene (TNT), $C_7H_5N_3O_6$, can be prepared by the following two step synthesis: $C_6H_6 + CH_4$ $C_7H_8 + H_2$ $2 C_7H_8 + 6 NO_2$ $2 C_7H_5N_3O_6 + 3 H_2$

If **each** step in this synthesis gives a 50% yield, how much $C_7H_5N_3O_6$ (TNT) in grams can be produced starting with 780 g of benzene (C_6H_6)?

5 Ethyl alcohol (booze), C_2H_5OH , also called grain alcohol, can be made by the fermentation of glucose, $C_6H_{12}O_6$, which often comes from starch in grain:

$$_{C_6H_{12}O_6(aq)}$$
 $_{C_2H_5OH(l)} + ___2CO_2(g)$

Determine the maximum mass (theoretical yield) of ethyl alcohol which could be produced from 750 g of glucose. If 150 L of CO_2 is collected after the fermentation, what is the % yield. Density of CO_2 (g) is 1.96 g/ L.

6 Determine which of the following will dissolve in water, then classify these as

(s) strong electrolyte, (w) weak electrolyte or (n) non-electrolyte.

i) NH₃ ii) PbSO₄ iii) KHSO₄ iv) Hg₂Cl₂ v) HNO3 vi) NH₄OH vii) C₂H₅OH Explain your answer

- 7 Write the net ionic equation for any reaction that occurs upon mixing each pair of solution:
 - i) silver nitrate and barium chloride
 - ii) Magnesium sulfate and barium hydroxide
 - iii) Hydrochloric acid and strontium hydroxide.
 - iv) Iron(III) sulfide and nitric acid
- 8

In each of the following reaction, indicate which metal ion is the stronger oxidizing agent, that is rank each metal Zn, Ag and Pb in order of ease of oxidation . (i.e., Most easily oxidized > next easily oxidize > most difficult to oxidize)

i) $Zn(s) + 2AgNO_3(aq) = 2 Ag(s) + Zn(NO_3)_2(aq)$

- ii) $Pb(s) + 2AgNO_3(aq) = 2 Ag(s) + Pb(NO_3)_2(aq)$
- iii) Pb (s) + $Zn(NO_3)_{2 (aq)}$ NR.
- 9 Some sulfuric acid is spilled on a lab bench. It can be neutralized by sprinkling some sodium bicarbonate on to the sulfuric acid. The reaction produces sodium sulfate, carbon dioxide and water.
 - i) Write the molecular, ionic and net ionic equation and balance the equation (include the phases).
 - ii) What is the limiting reagent and how much remains if 35 ml of 6.0 M sulfuric acid is spilled and 50 grams of sodium bicarbonate is added ?
 - iii) What is the mass of carbon dioxide gas (g) that is produced ?
 - iv) How many molecules of carbon dioxide is produced ?
 - v) If 5.00 ml of water is actually produce, what is the % yield of water ?
 - vi) How many oxygen atoms are involved in this reaction ?
 - vii) If all the liquid is evaporated, what is the mass of sodium sulfate that is produced ?
 - viii) What is the concentration of sodium sulfate if 20.0 g sodium sulfate is dissolved in the 5.00 ml water?
 - ix) Suppose potassium hydroxide is substituted for sodium bicarbonate in the above reaction. What mass of potassium hydroxide is required to neutralize 35 ml of 6.0 M sulfuric acid.
- 10 Balance the following equations and then answer the questions below.

Potassium permanganate is added to hydrochloric acid to produce

chlorine gas, potassium chloride, manganese(II) chloride and water.

- i) How many moles of hydrochloric acid are required to react with 45 grams of potassium permanganate ?
- ii) How many chlorine molecules will be produced using 5.0 moles of potassium permanganate ?
- iii) To produce 55.0 grams of manganese(II) chloride, what mass of hydrochloric acid is required?
- iv) How many moles of water will be produce when 7.00 moles of potassium permanganate is consumed ?

v) What is the maximum weight of chlorine that can be produced by reacting 35.0 g of potassium permanganate with 45.0 g of hydrochloric acid?

vi) In v (above), if the % yield of chlorine in the reaction is 76%, how much (g) chlorine was actually recovered ?

11

Consider **<u>100</u>** formula units (or molecules) of each:

a) Tin(IV) hypoiodite b) carbon tetraiodide c) cadmium iodite

- i) Which compound contains the largest mass of iodine? How much is this mass in grams?
- ii) Which contains the greatest mass of metal atoms? For a 100 unit sample, what is the total of these metal atoms ?
- iii) If all three of these substances were mixed and added to water, calculate the total number of ions in solution.